import os kwargs = { 'per_device_train_batch_size': 5, 'save_steps': 5, 'gradient_accumulation_steps': 1, 'num_train_epochs': 1, } def test_train_eval_loop(): os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' from swift.llm import sft_main, TrainArguments sft_main( TrainArguments( model='Qwen/Qwen2.5-0.5B-Instruct', dataset=['AI-ModelScope/alpaca-gpt4-data-zh#100'], target_modules=['all-linear', 'all-embedding'], modules_to_save=['all-embedding', 'all-norm'], eval_strategy='steps', eval_steps=5, per_device_eval_batch_size=5, eval_use_evalscope=True, eval_dataset=['gsm8k'], eval_dataset_args={'gsm8k': { 'few_shot_num': 0 }}, eval_limit=10, report_to=['wandb'], **kwargs)) if __name__ == '__main__': test_train_eval_loop()