import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' kwargs = { 'per_device_train_batch_size': 2, 'save_steps': 5, 'gradient_accumulation_steps': 4, 'num_train_epochs': 1, } def test_llm(): from swift.llm import pt_main, TrainArguments, infer_main, InferArguments result = pt_main( TrainArguments( model='Qwen/Qwen2-7B-Instruct', dataset=['swift/sharegpt:all#100'], split_dataset_ratio=0.01, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) def test_mllm(): from swift.llm import pt_main, TrainArguments, infer_main, InferArguments result = pt_main( TrainArguments( model='Qwen/Qwen2-VL-7B-Instruct', dataset=['modelscope/coco_2014_caption:validation#20', 'AI-ModelScope/alpaca-gpt4-data-en#20'], split_dataset_ratio=0.01, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) if __name__ == '__main__': # test_llm() test_mllm()