import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' kwargs = { 'per_device_train_batch_size': 2, 'save_steps': 5, 'gradient_accumulation_steps': 4, 'num_train_epochs': 1, } def test_rm(): from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='rm', model='Shanghai_AI_Laboratory/internlm2-1_8b-reward', dataset=['hjh0119/shareAI-Llama3-DPO-zh-en-emoji#100'], split_dataset_ratio=0.01, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) def test_ppo(): from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='ppo', model='LLM-Research/Llama-3.2-1B-Instruct', reward_model='AI-ModelScope/GRM-Llama3.2-3B-rewardmodel-ft', dataset=['AI-ModelScope/alpaca-gpt4-data-zh#100', 'AI-ModelScope/alpaca-gpt4-data-en#100'], **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) def test_ppo2(): from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='ppo', model='Qwen/Qwen2.5-7B-Instruct', reward_model='Qwen/Qwen2.5-7B-Instruct', dataset=['AI-ModelScope/alpaca-gpt4-data-zh#100', 'AI-ModelScope/alpaca-gpt4-data-en#100'], **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) def test_ppo_vl(): # PPO currently does not support VL, and the image has not been uploaded. os.environ['MAX_PIXELS'] = '1003520' from swift.llm import rlhf_main, RLHFArguments, infer_main, InferArguments result = rlhf_main( RLHFArguments( rlhf_type='ppo', model='Qwen/Qwen2-VL-2B-Instruct', reward_model='Qwen/Qwen2-VL-7B-Instruct', dataset=['modelscope/coco_2014_caption:validation#100'], **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_main(InferArguments(adapters=last_model_checkpoint, load_data_args=True, merge_lora=True)) if __name__ == '__main__': # test_rm() # test_ppo() # test_ppo2() test_ppo_vl()