import os from pprint import pprint os.environ['CUDA_VISIBLE_DEVICES'] = '1' kwargs = { 'per_device_train_batch_size': 4, 'per_device_eval_batch_size': 4, 'gradient_accumulation_steps': 4, 'num_train_epochs': 1, 'save_steps': 100, 'max_length': 512, 'task_type': 'seq_cls', 'num_labels': 2, } def calc_acc(infer_result): n_correct = 0 for res in infer_result: if res['response'] == res['labels']: n_correct += 1 return f'acc: {n_correct/len(infer_result)}, n_correct: {n_correct}, len(res): {len(infer_result)}' def test_llm(): from swift.llm import sft_main, TrainArguments, infer_main, InferArguments, Template res = [] for model in ['Qwen/Qwen2.5-0.5B-Instruct', 'Qwen/Qwen2.5-0.5B', 'AI-ModelScope/bert-base-chinese']: dataset = ['DAMO_NLP/jd:cls#2000'] result = sft_main(TrainArguments(model=model, dataset=dataset, split_dataset_ratio=0.1, **kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_result = infer_main( InferArguments(ckpt_dir=last_model_checkpoint, load_data_args=True, truncation_strategy='right')) res.append(calc_acc(infer_result)) infer_result2 = infer_main( InferArguments( ckpt_dir=last_model_checkpoint, load_data_args=True, max_batch_size=16, truncation_strategy='right')) res.append(calc_acc(infer_result2)) model = 'Qwen/Qwen2.5-0.5B-Instruct' dataset = ['DAMO_NLP/jd#2000'] train_kwargs = kwargs.copy() train_kwargs.pop('task_type') train_kwargs.pop('num_labels') result = sft_main(TrainArguments(model=model, dataset=dataset, split_dataset_ratio=0.1, **train_kwargs)) last_model_checkpoint = result['last_model_checkpoint'] infer_result = infer_main( InferArguments(ckpt_dir=last_model_checkpoint, load_data_args=True, truncation_strategy='right')) res.append(calc_acc(infer_result)) infer_result2 = infer_main( InferArguments( ckpt_dir=last_model_checkpoint, load_data_args=True, max_batch_size=16, truncation_strategy='right')) res.append(calc_acc(infer_result2)) pprint(res) if __name__ == '__main__': test_llm()