# Evaluation SWIFT supports eval (evaluation) capabilities to provide standardized evaluation metrics for both raw models and trained models. ## Capability Introduction SWIFT's eval capability utilizes the EvalScope evaluation framework from the Magic Tower community, which has been advanced in its encapsulation to support the evaluation needs of various models. > Note: EvalScope supports many other complex capabilities, such as [model performance evaluation](https://evalscope.readthedocs.io/en/latest/user_guides/stress_test/quick_start.html), so please use the EvalScope framework directly. Currently, we support the evaluation process of **standard evaluation datasets** as well as the evaluation process of **user-defined** evaluation datasets. The **standard evaluation datasets** are supported by three evaluation backends: Below are the names of the supported datasets. For detailed information on the datasets, please refer to [all supported datasets](https://evalscope.readthedocs.io/en/latest/get_started/supported_dataset.html). 1. Native (default): Primarily supports pure text evaluation, while **supporting** visualization of evaluation results. ```text 'arc', 'bbh', 'ceval', 'cmmlu', 'competition_math', 'general_qa', 'gpqa', 'gsm8k', 'hellaswag', 'humaneval', 'ifeval', 'iquiz', 'mmlu', 'mmlu_pro', 'race', 'trivia_qa', 'truthful_qa' ``` 2. OpenCompass: Primarily supports pure text evaluation, currently **does not support** visualization of evaluation results. ```text 'obqa', 'cmb', 'AX_b', 'siqa', 'nq', 'mbpp', 'winogrande', 'mmlu', 'BoolQ', 'cluewsc', 'ocnli', 'lambada', 'CMRC', 'ceval', 'csl', 'cmnli', 'bbh', 'ReCoRD', 'math', 'humaneval', 'eprstmt', 'WSC', 'storycloze', 'MultiRC', 'RTE', 'chid', 'gsm8k', 'AX_g', 'bustm', 'afqmc', 'piqa', 'lcsts', 'strategyqa', 'Xsum', 'agieval', 'ocnli_fc', 'C3', 'tnews', 'race', 'triviaqa', 'CB', 'WiC', 'hellaswag', 'summedits', 'GaokaoBench', 'ARC_e', 'COPA', 'ARC_c', 'DRCD' ``` 3. VLMEvalKit: Primarily supports multimodal evaluation and currently **does not support** visualization of evaluation results. ```text 'COCO_VAL', 'MME', 'HallusionBench', 'POPE', 'MMBench_DEV_EN', 'MMBench_TEST_EN', 'MMBench_DEV_CN', 'MMBench_TEST_CN', 'MMBench', 'MMBench_CN', 'MMBench_DEV_EN_V11', 'MMBench_TEST_EN_V11', 'MMBench_DEV_CN_V11', 'MMBench_TEST_CN_V11', 'MMBench_V11', 'MMBench_CN_V11', 'SEEDBench_IMG', 'SEEDBench2', 'SEEDBench2_Plus', 'ScienceQA_VAL', 'ScienceQA_TEST', 'MMT-Bench_ALL_MI', 'MMT-Bench_ALL', 'MMT-Bench_VAL_MI', 'MMT-Bench_VAL', 'AesBench_VAL', 'AesBench_TEST', 'CCBench', 'AI2D_TEST', 'MMStar', 'RealWorldQA', 'MLLMGuard_DS', 'BLINK', 'OCRVQA_TEST', 'OCRVQA_TESTCORE', 'TextVQA_VAL', 'DocVQA_VAL', 'DocVQA_TEST', 'InfoVQA_VAL', 'InfoVQA_TEST', 'ChartQA_TEST', 'MathVision', 'MathVision_MINI', 'MMMU_DEV_VAL', 'MMMU_TEST', 'OCRBench', 'MathVista_MINI', 'LLaVABench', 'MMVet', 'MTVQA_TEST', 'MMLongBench_DOC', 'VCR_EN_EASY_500', 'VCR_EN_EASY_100', 'VCR_EN_EASY_ALL', 'VCR_EN_HARD_500', 'VCR_EN_HARD_100', 'VCR_EN_HARD_ALL', 'VCR_ZH_EASY_500', 'VCR_ZH_EASY_100', 'VCR_ZH_EASY_ALL', 'VCR_ZH_HARD_500', 'VCR_ZH_HARD_100', 'VCR_ZH_HARD_ALL', 'MMDU', 'MMBench-Video', 'Video-MME' ``` ## Environment Preparation ```shell pip install ms-swift[eval] -U ``` Or install from source: ```shell git clone https://github.com/modelscope/ms-swift.git cd ms-swift pip install -e '.[eval]' ``` ## Evaluation Supports four methods of evaluation: pure text evaluation, multimodal evaluation, URL evaluation, and custom dataset evaluation. **Basic Example** ```shell CUDA_VISIBLE_DEVICES=0 \ swift eval \ --model Qwen/Qwen2.5-0.5B-Instruct \ --eval_backend Native \ --infer_backend pt \ --eval_limit 10 \ --eval_dataset gsm8k ``` Where: - model: Can specify a local model path or a model ID on modelscope - eval_backend: Options are Native, OpenCompass, VLMEvalKit; default is Native - infer_backend: Options are pt, vllm, sglang, lmdeploy; default is pt - eval_limit: Sample size for each evaluation set; default is None, which means using all data; can be used for quick validation - eval_dataset: Evaluation dataset(s); multiple datasets can be set, separated by spaces **Complex Evaluation Example** ```shell CUDA_VISIBLE_DEVICES=0 \ swift eval \ --model Qwen/Qwen2.5-0.5B-Instruct \ --eval_backend Native \ --infer_backend pt \ --eval_limit 10 \ --eval_dataset gsm8k \ --dataset_args '{"gsm8k": {"few_shot_num": 0, "filters": {"remove_until": ""}}}' \ --eval_generation_config '{"max_tokens": 512, "temperature": 0}' \ --extra_eval_args '{"ignore_errors": true, "debug": true}' ``` For a specific list of evaluation parameters, please refer to [here](./Command-line-parameters.md#evaluation-arguments). ## Evaluation During Training SWIFT supports using EvalScope to evaluate the current model during the training process, allowing for timely understanding of the model's training effectiveness. **Basic Example** ```shell CUDA_VISIBLE_DEVICES=0 \ swift sft \ --model "Qwen/Qwen2.5-0.5B-Instruct" \ --train_type "lora" \ --dataset "AI-ModelScope/alpaca-gpt4-data-zh#100" \ --torch_dtype "bfloat16" \ --num_train_epochs "1" \ --per_device_train_batch_size "1" \ --learning_rate "1e-4" \ --lora_rank "8" \ --lora_alpha "32" \ --target_modules "all-linear" \ --gradient_accumulation_steps "16" \ --save_steps "50" \ --save_total_limit "5" \ --logging_steps "5" \ --max_length "2048" \ --eval_strategy "steps" \ --eval_steps "5" \ --per_device_eval_batch_size "5" \ --eval_use_evalscope \ --eval_dataset "gsm8k" \ --eval_dataset_args '{"gsm8k": {"few_shot_num": 0}}' \ --eval_limit "10" ``` Note that the launch command is `sft`, and the evaluation-related parameters include: - eval_strategy: Evaluation strategy. Defaults to None, following the `save_strategy` policy - eval_steps: Defaults to None. If an evaluation dataset exists, it follows the `save_steps` policy - eval_use_evalscope: Whether to use evalscope for evaluation, this parameter needs to be set to enable evaluation - eval_dataset: Evaluation datasets, multiple datasets can be set, separated by spaces - eval_dataset_args: Evaluation dataset parameters in JSON format, parameters for multiple datasets can be set - eval_limit: Number of samples from the evaluation dataset - eval_generation_config: Model inference configuration during evaluation, in JSON format, default is `{'max_tokens': 512}` More evaluation examples can be found in [examples](https://github.com/modelscope/ms-swift/tree/main/examples/eval). ## Custom Evaluation Datasets This framework supports two predefined dataset formats: multiple-choice questions (MCQ) and question-and-answer (QA). The usage process is as follows: *Note: When using a custom evaluation, the `eval_backend` parameter must be set to `Native`.* ### Multiple-Choice Question Format (MCQ) This format is suitable for scenarios involving multiple-choice questions, and the evaluation metric is accuracy. **Data Preparation** Prepare a CSV file in the multiple-choice question format, structured as follows: ```text mcq/ ├── example_dev.csv # (Optional) The filename should follow the format `{subset_name}_dev.csv` for few-shot evaluation └── example_val.csv # The filename should follow the format `{subset_name}_val.csv` for the actual evaluation data ``` The CSV file should follow this format: ```text id,question,A,B,C,D,answer 1,Generally speaking, the amino acids that make up animal proteins are____,4 types,22 types,20 types,19 types,C 2,Among the substances present in the blood, which is not a metabolic end product?____,Urea,Uric acid,Pyruvate,Carbon dioxide,C ``` Where: - `id` is an optional index - `question` is the question - `A`, `B`, `C`, `D`, etc. are the options, with a maximum of 10 options - `answer` is the correct option **Launching Evaluation** Run the following command: ```bash CUDA_VISIBLE_DEVICES=0 \ swift eval \ --model Qwen/Qwen2.5-0.5B-Instruct \ --eval_backend Native \ --infer_backend pt \ --eval_dataset general_mcq \ --dataset_args '{"general_mcq": {"local_path": "/path/to/mcq", "subset_list": ["example"]}}' ``` Where: - `eval_dataset` should be set to `general_mcq` - `dataset_args` should be set with: - `local_path` as the path to the custom dataset folder - `subset_list` as the name of the evaluation dataset, taken from the `*_dev.csv` mentioned above **Running Results** ```text +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Model | Dataset | Metric | Subset | Num | Score | Cat.0 | +=====================+=============+=================+==========+=======+=========+=========+ | Qwen2-0.5B-Instruct | general_mcq | AverageAccuracy | example | 12 | 0.5833 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ ``` ## Question-and-Answer Format (QA) This format is suitable for scenarios involving question-and-answer, and the evaluation metrics are `ROUGE` and `BLEU`. **Data Preparation** Prepare a JSON Lines file in the question-and-answer format, containing one file in the following structure: ```text qa/ └── example.jsonl ``` The JSON Lines file should follow this format: ```json {"query": "What is the capital of China?", "response": "The capital of China is Beijing"} {"query": "What is the highest mountain in the world?", "response": "It is Mount Everest"} {"query": "Why can't penguins be seen in the Arctic?", "response": "Because most penguins live in Antarctica"} ``` **Launching Evaluation** Run the following command: ```bash CUDA_VISIBLE_DEVICES=0 \ swift eval \ --model Qwen/Qwen2.5-0.5B-Instruct \ --eval_backend Native \ --infer_backend pt \ --eval_dataset general_qa \ --dataset_args '{"general_qa": {"local_path": "/path/to/qa", "subset_list": ["example"]}}' ``` Where: - `eval_dataset` should be set to `general_qa` - `dataset_args` is a JSON string that needs to be set with: - `local_path` as the path to the custom dataset folder - `subset_list` as the name of the evaluation dataset, taken from the `*.jsonl` mentioned above **Running Results** ```text +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Model | Dataset | Metric | Subset | Num | Score | Cat.0 | +=====================+=============+=================+==========+=======+=========+=========+ | Qwen2-0.5B-Instruct | general_qa | bleu-1 | default | 12 | 0.2324 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | bleu-2 | default | 12 | 0.1451 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | bleu-3 | default | 12 | 0.0625 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | bleu-4 | default | 12 | 0.0556 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-1-f | default | 12 | 0.3441 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-1-p | default | 12 | 0.2393 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-1-r | default | 12 | 0.8889 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-2-f | default | 12 | 0.2062 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-2-p | default | 12 | 0.1453 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-2-r | default | 12 | 0.6167 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-l-f | default | 12 | 0.333 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-l-p | default | 12 | 0.2324 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-l-r | default | 12 | 0.8889 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ ```