--- license: mit pipeline_tag: text-classification --- # Nexus Bank Loan Default Prediction Model This is a machine learning model to predict loan defaulters for Nexus Bank. ## Usage To use the model, you can input the salary and number of dependents of a customer, and it will predict whether they are likely to default on their loan. ## Dependencies - pandas - numpy - seaborn - matplotlib - scikit-learn - gradio ## Data Source The data used for training this model was obtained from Nexus Bank. import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline nexus_bank = pd.read_csv('nexus_bank_dataa.csv') nexus_bank.head() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.15, random_state=90) from sklearn.neighbors import KNeighborsClassifier knn_classifier =KNeighborsClassifier() knn_classifier.fit(X_train,y_train) knn_predict = knn_classifier.predict(X_test) knn_predict import gradio as gr # Prediction function def predict_defaulter(salary, dependents): input_data = [[salary, dependents]] knn_predict = knn_classifier.predict(input_data) return "Yes! its Defaulter" if knn_predict[0] == 1 else "No! its not Defaulter" # Interface interface = gr.Interface( fn=predict_defaulter, inputs=["number", "number"], outputs="text", title="Defaulter Prediction" ) # Launch the interface interface.launch()