--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-cased tags: - generated_from_trainer model-index: - name: popular-snail-470 results: [] --- # popular-snail-470 This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1428 - Hamming Loss: 0.0394 - Zero One Loss: 0.8140 - Jaccard Score: 0.7792 - Hamming Loss Optimised: 0.0378 - Hamming Loss Threshold: 0.2878 - Zero One Loss Optimised: 0.71 - Zero One Loss Threshold: 0.1741 - Jaccard Score Optimised: 0.6376 - Jaccard Score Threshold: 0.1616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.0943791435964314e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 160 | 0.1685 | 0.0438 | 0.8812 | 0.8679 | 0.0438 | 0.5944 | 0.8812 | 0.7111 | 0.8679 | 0.7111 | | No log | 2.0 | 320 | 0.1422 | 0.0398 | 0.815 | 0.7804 | 0.0363 | 0.2166 | 0.6925 | 0.1817 | 0.621 | 0.1587 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3