--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer datasets: - medqa_corpus_en model-index: - name: gpt2-medqa results: [] --- # gpt2-medqa This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the medqa_corpus_en dataset. It achieves the following results on the evaluation set: - Loss: 5.7186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 469 | 6.3476 | | 7.4059 | 2.0 | 938 | 5.8686 | | 6.1689 | 3.0 | 1407 | 5.7186 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0