--- library_name: sana tags: - text-to-image - Sana - 512px_based_image_size language: - en - zh base_model: - Efficient-Large-Model/Sana_1600M_512px pipeline_tag: text-to-image ---

logo

# 🐱 Sana Model Card

teaser_page1

## Model

teaser_page1

We introduce **Sana**, a text-to-image framework that can efficiently generate images up to 4096 × 4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Source code is available at https://github.com/NVlabs/Sana. ### Model Description - **Developed by:** NVIDIA, Sana - **Model type:** Linear-Diffusion-Transformer-based text-to-image generative model - **Model size:** 1648M parameters - **Model resolution:** This model is developed to generate 512px based images with multi-scale heigh and width. - **License:** [CC BY-NC-SA 4.0 License](./LICENSE.txt) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a Linear Diffusion Transformer that uses one fixed, pretrained text encoders ([Gemma2-2B-IT](https://huggingface.co/google/gemma-2-2b-it)) and one 32x spatial-compressed latent feature encoder ([DC-AE](https://hanlab.mit.edu/projects/dc-ae)). - **Resources for more information:** Check out our [GitHub Repository](https://github.com/NVlabs/Sana) and the [Sana report on arXiv](https://arxiv.org/abs/2410.10629). ### Model Sources For research purposes, we recommend our `generative-models` Github repository (https://github.com/NVlabs/Sana), which is more suitable for both training and inference and for which most advanced diffusion sampler like Flow-DPM-Solver is integrated. [MIT Han-Lab](https://nv-sana.mit.edu/) provides free Sana inference. - **Repository:** ttps://github.com/NVlabs/Sana - **Demo:** https://nv-sana.mit.edu/ ### 🧨 Diffusers PR developing: [Sana](https://github.com/huggingface/diffusers/pull/9982) and [DC-AE](https://github.com/huggingface/diffusers/pull/9708) ## Uses ### Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. Excluded uses are described below. ### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render complex legible text - fingers, .etc in general may not be generated properly. - The autoencoding part of the model is lossy. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.