--- library_name: transformers license: other base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml tags: - generated_from_trainer model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Edens-Gate/jellymazeisacuteandfunnybear type: sharegpt conversation: chatml chat_template: chatml val_set_size: 0.01 output_dir: ./outputs/out adapter: lora_r: lora_alpha: lora_dropout: lora_target_linear: sequence_len: 16384 # sequence_len: 32768 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: tinymagnumr6 wandb_entity: wandb_watch: wandb_name: tinymagnumr6 wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000003 weight_decay: 0.05 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.06 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> ```

# outputs/out This model is a fine-tuned version of [IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml](https://huggingface.co/IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6735 | 0.0056 | 1 | 1.6279 | | 1.4032 | 0.2525 | 45 | 1.3189 | | 1.3647 | 0.5049 | 90 | 1.2601 | | 1.3609 | 0.7574 | 135 | 1.2411 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1