audio: chunk_size: 261632 dim_f: 4096 dim_t: 512 hop_length: 512 n_fft: 8192 num_channels: 2 sample_rate: 44100 min_mean_abs: 0.001 model: encoder_name: tu-maxvit_large_tf_512 # look here for possibilities: https://github.com/qubvel/segmentation_models.pytorch#encoders- decoder_type: unet # unet, fpn act: gelu num_channels: 128 num_subbands: 8 training: batch_size: 8 gradient_accumulation_steps: 1 grad_clip: 0 instruments: - vocals - other lr: 5.0e-05 patience: 2 reduce_factor: 0.95 target_instrument: null num_epochs: 1000 num_steps: 2000 augmentation: false # enable augmentations by audiomentations and pedalboard augmentation_type: simple1 use_mp3_compress: false # Deprecated augmentation_mix: true # Mix several stems of the same type with some probability augmentation_loudness: true # randomly change loudness of each stem augmentation_loudness_type: 1 # Type 1 or 2 augmentation_loudness_min: 0.5 augmentation_loudness_max: 1.5 q: 0.95 coarse_loss_clip: true ema_momentum: 0.999 optimizer: adamw other_fix: true # it's needed for checking on multisong dataset if other is actually instrumental inference: batch_size: 1 dim_t: 512 num_overlap: 4