--- license: apache-2.0 datasets: - lambada language: - en library_name: transformers pipeline_tag: text-generation tags: - text-generation-inference - causal-lm - int8 - tensorrt - ENOT-AutoDL --- # INT8 GPT-J 6B GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. This repository contains GPT-J 6B onnx model suitable for building TensorRT int8+fp32 engines. Quantization of model was performed by the [ENOT-AutoDL](https://pypi.org/project/enot-autodl/) framework. Code for building of TensorRT engines and examples published on [github](https://github.com/ENOT-AutoDL/ENOT-transformers). ## Metrics: | |TensorRT INT8+FP32|torch FP16|torch FP32| |---|:---:|:---:|:---:| | **Lambada Acc** |78.46%|79.53%|-| | **Model size (GB)** |8.5|12.1|24.2| ### Test environment * GPU RTX 4090 * CPU 11th Gen Intel(R) Core(TM) i7-11700K * TensorRT 8.5.3.1 * pytorch 1.13.1+cu116 ## Latency: |Input sequance length|Number of generated tokens|TensorRT INT8+FP32 ms|torch FP16 ms|Acceleration| |:---:|:---:|:---:|:---:|:---:| |64|64|1040|1610|1.55| |64|128|2089|3224|1.54| |64|256|4236|6479|1.53| |128|64|1060|1619|1.53| |128|128|2120|3241|1.53| |128|256|4296|6510|1.52| |256|64|1109|1640|1.49| |256|128|2204|3276|1.49| |256|256|4443|6571|1.49| ### Test environment * GPU RTX 4090 * CPU 11th Gen Intel(R) Core(TM) i7-11700K * TensorRT 8.5.3.1 * pytorch 1.13.1+cu116 ## How to use Example of inference and accuracy test [published on github](https://github.com/ENOT-AutoDL/ENOT-transformers): ```shell git clone https://github.com/ENOT-AutoDL/ENOT-transformers ```