--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: efficientnet-b5-Brain_Tumors_Image_Classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8020304568527918 ---

efficientnet-b5-Brain_Tumors_Image_Classification

This model is a fine-tuned version of [google/efficientnet-b5](https://huggingface.co/google/efficientnet-b5). It achieves the following results on the evaluation set: - Loss: 0.9410 - Accuracy: 0.8020 - F1 - Weighted: 0.7736 - Micro: 0.8020 - Macro: 0.7802 - Recall - Weighted: 0.8020 - Micro: 0.8020 - Macro: 0.7977 - Precision - Weighted: 0.8535 - Micro: 0.8020 - Macro: 0.8682

Model Description

Click here for the code that I used to create this model. This project is part of a comparison of seventeen (17) transformers. Click here to see the README markdown file for the full project

Intended Uses & Limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training & Evaluation Data

Brain Tumor Image Classification Dataset

Sample Images

Class Distribution of Training Dataset

Class Distribution of Evaluation Dataset

## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 1.3872 | 1.0 | 180 | 1.0601 | 0.6853 | 0.6485 | 0.6853 | 0.6550 | 0.6853 | 0.6853 | 0.6802 | 0.8177 | 0.6853 | 0.8330 | | 1.3872 | 2.0 | 360 | 0.9533 | 0.7843 | 0.7483 | 0.7843 | 0.7548 | 0.7843 | 0.7843 | 0.7819 | 0.8354 | 0.7843 | 0.8471 | | 0.8186 | 3.0 | 540 | 0.9410 | 0.8020 | 0.7736 | 0.8020 | 0.7802 | 0.8020 | 0.8020 | 0.7977 | 0.8535 | 0.8020 | 0.8682 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3