--- language: - en license: apache-2.0 tags: - generated_from_trainer - medical - science datasets: - ncbi_disease metrics: - seqeval - f1 - recall - accuracy - precision pipeline_tag: token-classification base_model: bert-base-cased model-index: - name: bert-base-cased-finetuned-ner-NCBI_Disease results: [] --- # bert-base-cased-finetuned-ner-NCBI_Disease This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Disease: - Precision: 0.8063891577928364 - Recall: 0.8677083333333333 - F1: 0.8359257400903161 - Number: 960 - Overall - Precision: 0.8064 - Recall: 0.8677 - F1: 0.8359 - Accuracy: 0.9825 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/NCBI_Disease/NER%20Project%20Using%20NCBI_Disease%20Dataset.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Data Source: https://huggingface.co/datasets/ncbi_disease ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Disease Precision | Disease Recall | Disease F1 | Disease Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-----------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|:-----------------:|:--------------:|:----------:|:-------:| | 0.0525 | 1.0 | 340 | 0.0617 | 0.7813 | 0.7854 | 0.7834 | 960 | 0.7813 | 0.7854 | 0.7834 | 0.9796 | | 0.022 | 2.0 | 680 | 0.0551 | 0.7897 | 0.8646 | 0.8255 | 960 | 0.7897 | 0.8646 | 0.8255 | 0.9819 | | 0.0154 | 3.0 | 1020 | 0.0614 | 0.8064 | 0.8677 | 0.8359 | 960 | 0.8064 | 0.8677 | 0.8359 | 0.9825 | * All values in the above chart are rounded to the nearest ten-thousandth. ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3