import torch import numpy as np import torch.nn.functional as F from torch.autograd import Variable from scipy.signal import get_window from librosa.util import pad_center, tiny from maha_tts.utils.audio import window_sumsquare class STFT(torch.nn.Module): """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'): super(STFT, self).__init__() self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None scale = self.filter_length / self.hop_length fourier_basis = np.fft.fft(np.eye(self.filter_length)) cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]) forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) inverse_basis = torch.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :]) if window is not None: assert(filter_length >= win_length) # get window and zero center pad it to filter_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, size = filter_length) fft_window = torch.from_numpy(fft_window).float() # window the bases forward_basis *= fft_window inverse_basis *= fft_window self.register_buffer('forward_basis', forward_basis.float()) self.register_buffer('inverse_basis', inverse_basis.float()) def transform(self, input_data): num_batches = input_data.size(0) num_samples = input_data.size(1) self.num_samples = num_samples # similar to librosa, reflect-pad the input input_data = input_data.view(num_batches, 1, num_samples) input_data = F.pad( input_data.unsqueeze(1), (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0), mode='reflect') input_data = input_data.squeeze(1) forward_transform = F.conv1d( input_data, Variable(self.forward_basis, requires_grad=False), stride=self.hop_length, padding=0) cutoff = int((self.filter_length / 2) + 1) real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part**2 + imag_part**2) phase = torch.autograd.Variable( torch.atan2(imag_part.data, real_part.data)) return magnitude, phase def inverse(self, magnitude, phase): recombine_magnitude_phase = torch.cat( [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1) inverse_transform = F.conv_transpose1d( recombine_magnitude_phase, Variable(self.inverse_basis, requires_grad=False), stride=self.hop_length, padding=0) if self.window is not None: window_sum = window_sumsquare( self.window, magnitude.size(-1), hop_length=self.hop_length, win_length=self.win_length, n_fft=self.filter_length, dtype=np.float32) # remove modulation effects approx_nonzero_indices = torch.from_numpy( np.where(window_sum > tiny(window_sum))[0]) window_sum = torch.autograd.Variable( torch.from_numpy(window_sum), requires_grad=False) window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices] # scale by hop ratio inverse_transform *= float(self.filter_length) / self.hop_length inverse_transform = inverse_transform[:, :, int(self.filter_length/2):] inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):] return inverse_transform def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction