--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.805 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6650 - Accuracy: 0.805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.2566 | 0.9825 | 14 | 0.7227 | 0.74 | | 0.2729 | 1.9649 | 28 | 0.3916 | 0.815 | | 0.1553 | 2.9474 | 42 | 0.8409 | 0.75 | | 0.1371 | 4.0 | 57 | 0.3706 | 0.885 | | 0.1588 | 4.9825 | 71 | 0.8758 | 0.765 | | 0.1093 | 5.9649 | 85 | 0.6063 | 0.82 | | 0.102 | 6.9474 | 99 | 0.5308 | 0.84 | | 0.0713 | 8.0 | 114 | 0.3536 | 0.88 | | 0.1045 | 8.9825 | 128 | 0.3858 | 0.875 | | 0.0661 | 9.8246 | 140 | 0.6650 | 0.805 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1