--- license: apache-2.0 base_model: DouglasBraga/swin-tiny-patch4-window7-224-finetuned-eurosat-leukemia-3000 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat-leukemia-3000-finetuned-leukemia-1000 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # swin-tiny-patch4-window7-224-finetuned-eurosat-leukemia-3000-finetuned-leukemia-1000 This model is a fine-tuned version of [DouglasBraga/swin-tiny-patch4-window7-224-finetuned-eurosat-leukemia-3000](https://huggingface.co/DouglasBraga/swin-tiny-patch4-window7-224-finetuned-eurosat-leukemia-3000) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0026 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5471 | 0.9825 | 14 | 0.1240 | 0.955 | | 0.1792 | 1.9649 | 28 | 0.0493 | 0.985 | | 0.0936 | 2.9474 | 42 | 0.1210 | 0.965 | | 0.0907 | 4.0 | 57 | 0.0056 | 1.0 | | 0.0441 | 4.9825 | 71 | 0.0165 | 0.995 | | 0.0341 | 5.9649 | 85 | 0.0059 | 0.995 | | 0.0406 | 6.9474 | 99 | 0.0018 | 1.0 | | 0.013 | 8.0 | 114 | 0.0200 | 0.995 | | 0.0342 | 8.9825 | 128 | 0.0030 | 1.0 | | 0.0246 | 9.8246 | 140 | 0.0026 | 1.0 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.2.2+cpu - Datasets 2.19.0 - Tokenizers 0.15.2