--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: prm_version3_hf results: [] --- # prm_version3_hf This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the prm_conversations_prm_version3_math+webinstructsub-mcq+webinstructsub-oe+apps+gsm_mix_ref_subsample_hf dataset. It achieves the following results on the evaluation set: - Loss: 0.1262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2014 | 0.1127 | 500 | 0.1967 | | 0.1775 | 0.2253 | 1000 | 0.1792 | | 0.1532 | 0.3380 | 1500 | 0.1660 | | 0.1492 | 0.4506 | 2000 | 0.1544 | | 0.1318 | 0.5633 | 2500 | 0.1443 | | 0.1324 | 0.6759 | 3000 | 0.1358 | | 0.1347 | 0.7886 | 3500 | 0.1296 | | 0.1128 | 0.9012 | 4000 | 0.1268 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3