--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-Math-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: prm_qwen25_math_version3_subsample_hf results: [] --- # prm_qwen25_math_version3_subsample_hf This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the prm_conversations_prm_version3_math+webinstructsub-mcq+webinstructsub-oe+apps+gsm_mix_ref_subsample_hf dataset. It achieves the following results on the evaluation set: - Loss: 0.1639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2317 | 0.1127 | 500 | 0.2231 | | 0.2003 | 0.2253 | 1000 | 0.2006 | | 0.166 | 0.3380 | 1500 | 0.1876 | | 0.1755 | 0.4506 | 2000 | 0.1788 | | 0.1612 | 0.5633 | 2500 | 0.1725 | | 0.1607 | 0.6759 | 3000 | 0.1680 | | 0.1655 | 0.7886 | 3500 | 0.1653 | | 0.1486 | 0.9012 | 4000 | 0.1641 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3