--- language: - mn base_model: bayartsogt/mongolian-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner-test-2 results: [] --- # roberta-base-ner-test-2 This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0742 - Precision: 0.8999 - Recall: 0.9142 - F1: 0.9070 - Accuracy: 0.9776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4131 | 1.0 | 60 | 0.1140 | 0.8104 | 0.8399 | 0.8249 | 0.9630 | | 0.0936 | 2.0 | 120 | 0.0785 | 0.8835 | 0.9020 | 0.8926 | 0.9748 | | 0.0617 | 3.0 | 180 | 0.0742 | 0.8999 | 0.9142 | 0.9070 | 0.9776 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2