--- library_name: transformers language: - ru license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Ru other results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ru split: test args: 'config: ru, split: test' metrics: - name: Wer type: wer value: 15.34873498095145 --- # Whisper Small Ru other This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2081 - Wer: 15.3487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.178 | 0.9479 | 1000 | 0.1979 | 16.3720 | | 0.0963 | 1.8957 | 2000 | 0.1937 | 15.7016 | | 0.0279 | 2.8436 | 3000 | 0.2003 | 15.2364 | | 0.015 | 3.7915 | 4000 | 0.2081 | 15.3487 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.0