# Copyright (C) 2020 NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, check out LICENSE.md import torch from torch import nn class ApplyNoise(nn.Module): r"""Add Gaussian noise to the input tensor.""" def __init__(self): super().__init__() # scale of the noise self.weight = nn.Parameter(torch.zeros(1)) def forward(self, x, noise=None): r""" Args: x (tensor): Input tensor. noise (tensor, optional, default=``None``) : Noise tensor to be added to the input. """ if noise is None: sz = x.size() noise = x.new_empty(sz[0], 1, *sz[2:]).normal_() return x + self.weight * noise class PartialSequential(nn.Sequential): r"""Sequential block for partial convolutions.""" def __init__(self, *modules): super(PartialSequential, self).__init__(*modules) def forward(self, x): r""" Args: x (tensor): Input tensor. """ act = x[:, :-1] mask = x[:, -1].unsqueeze(1) for module in self: act, mask = module(act, mask_in=mask) return act