--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer datasets: - shipping_label_ner metrics: - precision - recall - f1 - accuracy model-index: - name: ner_bert_model results: - task: name: Token Classification type: token-classification dataset: name: shipping_label_ner type: shipping_label_ner config: shipping_label_ner split: validation args: shipping_label_ner metrics: - name: Precision type: precision value: 0.8095238095238095 - name: Recall type: recall value: 0.9066666666666666 - name: F1 type: f1 value: 0.8553459119496856 - name: Accuracy type: accuracy value: 0.8926553672316384 --- # ner_bert_model This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the shipping_label_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.4675 - Precision: 0.8095 - Recall: 0.9067 - F1: 0.8553 - Accuracy: 0.8927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 7 | 1.9550 | 0.0 | 0.0 | 0.0 | 0.4294 | | No log | 2.0 | 14 | 1.7431 | 0.0 | 0.0 | 0.0 | 0.4407 | | No log | 3.0 | 21 | 1.5315 | 0.2632 | 0.0667 | 0.1064 | 0.5198 | | No log | 4.0 | 28 | 1.3289 | 0.5490 | 0.3733 | 0.4444 | 0.6215 | | No log | 5.0 | 35 | 1.1498 | 0.5246 | 0.4267 | 0.4706 | 0.6497 | | No log | 6.0 | 42 | 1.0278 | 0.5921 | 0.6 | 0.5960 | 0.7175 | | No log | 7.0 | 49 | 0.8915 | 0.6579 | 0.6667 | 0.6623 | 0.7684 | | No log | 8.0 | 56 | 0.8158 | 0.6786 | 0.76 | 0.7170 | 0.8023 | | No log | 9.0 | 63 | 0.7012 | 0.7342 | 0.7733 | 0.7532 | 0.8249 | | No log | 10.0 | 70 | 0.6421 | 0.7590 | 0.84 | 0.7975 | 0.8475 | | No log | 11.0 | 77 | 0.5944 | 0.8025 | 0.8667 | 0.8333 | 0.8757 | | No log | 12.0 | 84 | 0.5570 | 0.7976 | 0.8933 | 0.8428 | 0.8870 | | No log | 13.0 | 91 | 0.5088 | 0.8148 | 0.88 | 0.8462 | 0.8927 | | No log | 14.0 | 98 | 0.5156 | 0.8193 | 0.9067 | 0.8608 | 0.8983 | | No log | 15.0 | 105 | 0.4958 | 0.8171 | 0.8933 | 0.8535 | 0.8927 | | No log | 16.0 | 112 | 0.4646 | 0.8171 | 0.8933 | 0.8535 | 0.8927 | | No log | 17.0 | 119 | 0.4745 | 0.8095 | 0.9067 | 0.8553 | 0.8927 | | No log | 18.0 | 126 | 0.4749 | 0.8095 | 0.9067 | 0.8553 | 0.8927 | | No log | 19.0 | 133 | 0.4720 | 0.8095 | 0.9067 | 0.8553 | 0.8927 | | No log | 20.0 | 140 | 0.4675 | 0.8095 | 0.9067 | 0.8553 | 0.8927 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2