--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-multilingual-cased-finetuned-ner results: [] --- # bert-base-multilingual-cased-finetuned-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2939 - Accuracy: 0.4501 - Precision: 0.5440 - Recall: 0.6659 - F1: 0.4954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 50 | 0.5390 | 0.3903 | 0.5183 | 0.4448 | 0.3118 | | No log | 2.0 | 100 | 0.4150 | 0.4152 | 0.5575 | 0.5062 | 0.3632 | | No log | 3.0 | 150 | 0.3530 | 0.4289 | 0.5842 | 0.5557 | 0.3945 | | No log | 4.0 | 200 | 0.3272 | 0.4348 | 0.5319 | 0.5761 | 0.4145 | | No log | 5.0 | 250 | 0.3047 | 0.4401 | 0.5175 | 0.6018 | 0.4284 | | No log | 6.0 | 300 | 0.2964 | 0.4422 | 0.5224 | 0.6224 | 0.4600 | | No log | 7.0 | 350 | 0.2927 | 0.4445 | 0.5391 | 0.6302 | 0.4691 | | No log | 8.0 | 400 | 0.2896 | 0.4457 | 0.5295 | 0.6335 | 0.4668 | | No log | 9.0 | 450 | 0.2810 | 0.4482 | 0.5360 | 0.6535 | 0.4846 | | 0.324 | 10.0 | 500 | 0.2852 | 0.4486 | 0.5383 | 0.6554 | 0.4847 | | 0.324 | 11.0 | 550 | 0.2949 | 0.4482 | 0.5372 | 0.6560 | 0.4858 | | 0.324 | 12.0 | 600 | 0.2938 | 0.4494 | 0.5437 | 0.6603 | 0.4917 | | 0.324 | 13.0 | 650 | 0.2906 | 0.4503 | 0.5437 | 0.6664 | 0.4952 | | 0.324 | 14.0 | 700 | 0.2963 | 0.4499 | 0.5466 | 0.6641 | 0.4957 | | 0.324 | 15.0 | 750 | 0.2939 | 0.4501 | 0.5440 | 0.6659 | 0.4954 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1