--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Full-2epoch-BERT-base-multilingual-finetuned-CEFR_ner-60000news results: [] --- # Full-2epoch-BERT-base-multilingual-finetuned-CEFR_ner-60000news This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1113 - Accuracy: 0.3015 - Precision: 0.5856 - Recall: 0.8155 - F1: 0.5650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1704 | 1.0 | 1563 | 0.1348 | 0.2991 | 0.5538 | 0.7961 | 0.5345 | | 0.1196 | 2.0 | 3126 | 0.1113 | 0.3015 | 0.5856 | 0.8155 | 0.5650 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.1 - Datasets 2.19.2 - Tokenizers 0.19.1