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Extremal Black Hole Weather
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We consider weakly non-linear gravitational perturbations of a near-extremal Kerr black hole
governed by the second order vacuum Einstein equation. Using the GHZ formalism [Green et al.,
Class. Quant. Grav. 7(7):075001, 2020], these are parameterized by a Hertz potential. We make an
ansatz for the Hertz potential as a series of zero-damped quasinormal modes with time-dependent
amplitudes, and derive a non-linear dynamical system for them. We find that our dynamical system
has a time-independent solution within the near horizon scaling limit. This equilibrium solution is

supported on axisymmetric modes, with amplitudes scaling as cℓ ∼ Clow2−ℓ/2ℓ− 7
2 for large polar

angular momentum mode number ℓ, where Clow is a cumulative amplitude of the low ℓ modes. We
interpret our result as evidence that the dynamical evolution will approach, for a parametrically
long time as extremality is approached, a distribution of mode amplitudes dyadically exponentially
suppressed in ℓ, hence as the endpoint of an inverse cascade. It is reminiscent of weather-like
phenomena in certain models of atmospheric dynamics of rotating bodies. During the timescale
considered, the decay of the QNMs themselves plays no role given their parametrically long half-life.
Hence, our result is due entirely to weakly non-linear effects.

I. INTRODUCTION

It is intriguing to ask whether there are dynamical
regimes for excited Kerr black holes governed by a weakly
non-linear self-interaction of gravitational waves over a
physically relevant time scale; for recent controversial dis-
cussions see e.g., [1–7]. A particularly natural regime to
look for such effects is the highly spinning Kerr black
hole, characterized by a small but non-zero extremality
parameter

ε =
r+ − r−

2r+
> 0, (1)

where r+, r− are the radii of the outer and inner horizons.
The near horizon region of such black holes may be

imagined as a leaky cavity [8], supporting a tower of expo-
nentially decaying but parametrically long-lived, stand-
ing gravitational waves called zero-damped quasi normal
modes (QNMs). The corresponding QNM frequencies
scale as [9–11]

ω ≈ m− iε(N + hℓm)

2M
for ε ≪ 1. (2)

Here ℓ,m are standard angular momentum type labels
of spin-weighted spheroidal harmonics [12–14], hℓm is a
parameter called the conformal weight1 [see Eq. (109)],
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1 Near horizon QNMs form lowest weight hℓm modules of the

near horizon isometry group SL2(R), which is also the confor-
mal group of a lightray, see App. L.

N = 0, 1, 2, . . . is the so-called the overtone number, and
M ≈ r+ is the mass of the nearly extremal (ε ≪ 1) Kerr
black hole. The zero-damped QNMs pile up at the su-
perradiant bound mΩH [≈ m/(2M) for a nearly extremal
black hole] and are co-rotating i.e., m/Re(ω) ≥ 0. They
are long-lived because e−iωt is very slowly decaying due
to the smallness of Im(ω) = −O(ε).

One reason for suspecting that near extremal Kerr
black holes may support significant non-linear effects is
that the long-lived nature of the QNMs (2) affords am-
ple time for self-interaction before dissipative effects are
expected to take over2. In fact, the QNMs (2) have been
linked [18, 19] at the linear level to the Aretakis phe-
nomenon [20] for exactly extremal black holes, see e.g.,
[21] for a refined numerical analysis, or [22] for a recent
mathematical analysis.

Furthermore, [23] observed that, since the real part
of the QNM frequencies m/(2M) is basically an integer,
there arises the possibility of a (near) resonant interac-
tion between long-lived QNMs once non-linear effects in
perturbation theory are taken into account, see [24, Sec.
I] for a rough estimation of various competing effects.
In particular, [23] suggested that certain energy transfer
processes between modes of different energy might occur,
possibly leading to a sort of inverse cascade.

Yet another reason for suspecting effects of this kind
for nearly extremal Kerr black holes is that the near hori-
zon region is geometrically a fibration over an AdS2 space
[25–27].3 It is known that, due to non-linear interactions,
the Einstein equations (EEs) in AdS4 have weakly tur-

2 For Schwarzschild- and slowly rotating Kerr or Kerr-deSitter
black holes, non-linear stability with quantitative decay has been
mathematically proven by [15–17].

3 This fact, and the correspondingly enhanced conformal symme-

http://arxiv.org/abs/2412.02821v1
https://orcid.org/0009-0009-3498-0485
https://orcid.org/0000-0001-6627-2808
https://orcid.org/0000-0002-6987-6313
mailto:iuliano@mis.mpg.de
mailto:stefan.hollands@uni-leipzig.de
mailto:stephen.green2@nottingham.ac.uk
mailto:zimmerator@protonmail.com


2

bulent solutions [29] recently confirmed mathematically
by [30].4 Such effects can be understood from the point
of view of resonant non-linear interaction between “nor-
mal”5 modes [31, 32].

However, there are also good reasons for thinking that
this intuition about non-linear interactions between long-
lived QNMs might not be qualitatively correct. Indeed,
AdS4 is qualitatively different from a warped product of
AdS2. In AdS4, there is a direct cascade, not an inverse

cascade. As opposed to normal modes, QNMs are very
far from a complete basis of perturbations even in the
linear regime.

Furthermore, while the proposal by [23] is intriguing
and suggestive, they do not provide—nor claim to do
so—a self-consistent framework of the non-linear effects.
In fact, they do not consider the EEs but instead a lin-
ear scalar model equation on a background perturbed
by a single given QNM. By design of their setup, [23]
are restricted to an analysis of how the background “par-
ent” QNM sources a doublet of the dynamical scalar field
“daughter” QNMs. Such an analysis might give a reliable
indication of the nature of energy transfer in a situation
with only a single triplet of resonant modes, as happens
e.g. for certain triplets of quasi bound state modes of
Schwarzschild-AdS4 [33]. But its status is in our view
not totally clear in the present situation, given that all

the zero-damped QNMs are resonant, which is more sug-
gestive of a coherent superposition of many QNMs. Such
a superposition simply cannot be captured by the setup
of [23].

In this work, we develop the weak turbulence idea in a
new framework of infinite dimensional dynamical systems
for QNM amplitudes.

A. 1 + 1D toy model

In order to give the reader a basic idea of our approach,
in this Introduction we consider first a toy model of a
real-valued scalar field Φ(t, φ), 2π-periodic in the angular
coordinate φ, obeying the non-linear Klein-Gordon (KG)
equation

(∂2
t − ∂2

φ)Φ = αΦ2. (3)

Here, α is a constant characterizing the strength of the in-
teraction. The corresponding linear KG equation, where
α = 0, has ordinary Fourier modes with real frequency ω
(“normal” modes, NMs)

um(t, φ) =
1√

2π
√

2ω
e−iωt+imφ, (4)

try group SL2(R) is the basis for the “Kerr-CFT correspondence,
see e.g., [28] for a review.

4 In the Einstein-Vlasov system on AdS4.
5 There is no dissipation in AdS4, hence these are ordinary

“Fourier”-type modes with real frequency.

where6 m = ±1,±2, . . . and ω = |m|. These modes are
normalized with respect to the KG inner product

(Φ1,Φ2)t = −i
2π
∫

0

dφ(Φ1∂tΦ
∗
2 − Φ∗

2∂tΦ1)

∣

∣

∣

∣

∣

t

, (5)

i.e. (um1
, um2

)t = δm1,m2
. While the KG inner prod-

uct does not depend on t for solutions to the linear KG
equation, it does for solutions Φ of the non-linear KG
equation (3). In fact, we may define a t-dependent NM
amplitude am(t) by

am(t) := (um,Φ)t . (6)

am is a complex valued function, analogous to the time-
dependent annihilation operator in the LSZ approach to
scattering in quantum field theory, see e.g., [34, I.5]. In
fact, we may write

Φ =
∑

m

am(t)um + c.c. (7)

It is easy to show that the non-linear KG equation (3)
is equivalent to an infinite-dimensional Hamiltonian dy-
namical system for the am’s, of the schematic form

d

dt
a1 = α

∑

2,3

U123a2a3 + . . . , (8)

with “overlap coefficients”

U123 = ei(ω1−ω2−ω3)tδm1,m2+m3

1

4
√
π

√
ω1ω2ω3

. (9)

The dots in Eq. (8) stand for other terms with
a∗

2a3, a2a
∗
3, a

∗
2a

∗
3 and correspondingly different

overlap coefficients involving other combinations
ei(ω1±2ω2±3ω3)tδm1,±2m2±3m3

, where the signs ±2,±3

depend on the particular combination.
Based on Eq. (8), we may expect that the am’s change

significantly over a timescale of order α−1, which, for
small α, is long compared to the timescale on which the
terms ei(ω1±2ω2±3ω3)t oscillate. These oscillations may be
expected to cancel unless we have a resonant combina-
tion, meaning that

ω1 ±2 ω2 ±3 ω3 = 0. (10)

Since ωi = |mi| and the mi are integers, there many
ways to satisfy these conditions. Terms in Eq. (8) meet-
ing the resonance condition (10) ought to govern the long
time evolution of the dynamical system. This effect may
be captured e.g., by the “two-timescale formalism” [31]
which has, in fact, been used to argue for a turbulent
instability of the Einstein-scalar field equations in spher-
ical symmetry in AdS4 spacetime by analyzing the cor-
responding dynamical system of NM amplitudes in this
case (see also [29, 32]).

6 For the sake of simplicity of this discussion we ignore the zero
mode, m = 0. In the black hole context, this mode corresponds
to axisymmetric perturbations and will be treated with appro-
priate care.
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B. Dynamical system for long-lived QNM
amplitudes

Up to a correction of order O(ε), the real part of the
long-lived QNM spectrum (2) is resonant in the sense
that Eq. (10) nearly holds whenever m1±2m2±3m3 = 0.
Since QNMs of spin s = ±2 describe linear gravitational
perturbations of Kerr, one may hope that an analysis
analogous to that sketched for the KG field may be car-
ried out for the EE in the leading non-linear approxima-
tion,

Eab[h] = 8παTab[h, h], (11)

where

gab = ḡab + αhab (12)

is a metric describing a Kerr metric ḡab perturbed by a
small field, hab. Eab represents the linearized Einstein
operator on ḡab [see Eq. (75)], and the second order
Einstein tensor Tab [see Eq. (76)] represents the leading
quadratic non-linearity on ḡab in the full EEGab[ḡ+αh] =
0.

By analogy with the treatment of the KG equation (3),
one might consider decomposing hab into QNMs (rather
than NMs, which do not exist in Kerr), and derive a
dynamical system analogous to (8). Potential objections
to such a scheme might be

1. black holes are dissipative systems: energy and
angular momentum may be absorbed or radiated
away to infinity, potentially driving the black hole
away from extremality,

2. QNMs as normally considered in general relativity
refer to the linear, scalar Teukolsky equations and
not directly to the non-linear, tensorial EE (11),

3. unlike NMs, QNMs are very far from a complete
set of functions,

4. there is a priori no obvious analogue of the KG
inner product, because complex conjugation is not
a symmetry of the Teukolsky equation.

Regarding 1), spin down rates due to dissipative effects
were estimated in [24, Sec. I], where it was shown that
sustained non-linear interactions of long-lived QNMs are
possible within a suitable parameter range sufficiently
near extremality. Objection 2) is a technical nuisance but
no longer a fundamental obstruction thanks to a recent
generalization [24, 35] of the metric reconstruction tech-
nique [36, 37] to the non-linear EE. In fact [24, 35] showed
that up to a so-called “corrector tensor”, xab, which can
be dealt with straightforwardly, non-linear metric pertur-
bations of Kerr can be written in so-called “reconstructed
form”, i.e. in terms of a Hertz potential, Φ, solving a
sourced Teukolsky equation [38, 39],

hab = Re S†
abΦ + xab. (13)

Here, S†
ab [see Eq. (44)] is the so-called reconstruction

operator. We propose that objection 3) is not an issue in
that we restrict attention to a dynamical regime during
which the non-linear evolution of hab is driven predom-
inantly by the QNM part of Φ via Eq. (13) up to and
including second order.

In accordance with this hypothesis, we informally write

Φ =
∑

q

cq(t)Υq, (14)

[compare Eq. (7)], where we call cq(t), q = (N, ℓ,m)
the “QNM amplitudes”, and where the Υq ≡ Υq(xµ) ∝
e−iωqt are the separated QNM mode functions at lin-
ear order. Thus, we propose that the metric (13) can
be accurately described, for a parametrically long Boyer
Lindquist time diverging as ε → 0, by (14) and the cor-
rector xab which is obtained by the technique of [40] as
a quadratic expression in the cq’s.

At the level of the linearized EE, we do not require
xab, and the cq’s would be simply constant. To derive
a dynamical system for them capturing the leading non-
linearities of the EE, and in order to address objection
4), we use a “scalar product” for Teukolsky-like scalars
recently introduced by [41]. It will turn out that, in terms
of this product and up to normalization factors, we have,

cq(t) = 〈〈Υq,Φ〉〉t (15)

[compare Eq. (6)]. This expression will enable us to
derive a dynamical system for the cq analogous to Eq.
(8). Our system takes the general form7 [see Eq. (91)]

d

dt
c1 = α

∑

2,3

(U123c2c3 + V123c2c
∗
3) , (16)

and is valid, in principle, without the near extremal as-
sumption.

Eq. (16) describes the leading non-linear (quadratic)
interaction between QNMs under the ansatz (14). As
such, it is well-suited to describe the resonant dynam-
ics of QNMs of near-extreme black holes. Our ansatz,
however, does not include what are commonly referred
to as quadratic QNMs (QQNMs) [3, 4, 6, 7], which are
generally driven off resonance. Indeed, QQNMs are par-
ticular solutions of the second-order Einstein equation for
generic spin, which are sourced by quadratic products of
QNMs. Since for generic spin, the driving frequency is
off-resonance, QQNM mode functions are not typically
close to those of QNMs. See Sec. I E for further discus-
sion.

In a linearization of the dynamical system (16), one
would pick some fixed “background” distribution {cq}

7 There are certain selection rules implicit in the double summa-
tion e.g., U123 ∝ δm1,m2+m3

or V123 ∝ δm1,m2−m3
. Hence

the second term can be associated with “mirror modes” under a
parity flip.
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and consider its linear perturbation {δcq}. The lineariza-
tion would read

d

dt
δc1 = α

∑

2,3

[

2U123c2δc3 + V123(c2δc
∗
3 + δc2c

∗
3)
]

. (17)

In particular, though this would almost certainly not be
a solution to (16), one could consider a background dis-
tribution with only a single QNM amplitude cNℓm ex-
cited. This “parent mode” gives a linear system for
the “daughter modes” described by the linear perturba-
tion δcq. There are certain selection rules implicit in
the coupling coefficients such as U123 ∝ δm1,m2+m3

or
V123 ∝ δm1,m2−m3

, thus a parent mode can induce a cou-
pling only between daughter modes satisfying these rules.

These rules can be satisfied in infinitely many ways,
so the resulting system still is in general infinite-
dimensional. A possible coupling is e.g., for the parent
mode to have magnetic mode number 2m and the daugh-
ter modes to have ±m i.e., half that of the parent mode.
Ref. [23] basically follows this approach (in a simplified
setting where the daughter modes have spin 0) and con-
siders an ad-hoc truncation of the infinite-dimensional
system for the daughter modes to δcNℓ(±m).

8 The re-
sulting 2 × 2 dimensional truncated system may be cast
into a single ODE possessing exponentially growing so-
lutions under certain conditions specified by [23]. These
growing solutions are interpreted by [23] as evidence for
an inverse cascade, 2m → m, since they propose this pro-
cess would replicate itself once the daughter mode sources
further granddaughter modes, etc.

Our framework goes beyond the analysis by [23] in sev-
eral ways. Firstly, we will not consider a linearization of
the dynamical system, but instead self consistently con-
sider the non-linear EE at the “three wave interactions”
non-linear level, which we will show, leads to (16). Con-
sequently, we will not make a distinction between parent
and daughter QNMs but treat all QNM amplitudes on
the same footing. As we have already indicated, we think
that this is more appropriate if one has in mind a cascade
which will excite many QNMs at roughly the same ampli-
tude. Thirdly, for the same reason, we will not truncate
the system ad-hoc to a 2 × 2 system. Lastly, in contrast
to [23], it will be important for us to take into account
the finer detail of the long-lived QNM spectrum at order
O(ε/M) hidden in the conformal weight hℓm.

Our analysis shows that our dynamical system of wave
interactions governed by the EE displays unexpected and
significant simplifications which we ascribe to the special
structure of the EE off of Kerr. These simplifications will
allow us to propose explicit turbulence spectra for near
equilibrium solutions.

8 Since their daughter modes are furthermore associated with a
real scalar field as opposed to a spin-2 gravitation perturbation,
further less important simplifications arise.

C. Simplifications in the near extremal
approximation

While our dynamical system (16) has the same gen-
eral form as in the KG toy model [see Eq. (8)] with am

suitably replaced by cq and the frequencies of the NMs
replaced by those (2) of the QNMs, it would be illusory
to expect that one might be able to find simple, explicit
formulas for the overlap coefficients U123, V123 in Kerr.

We therefore proceed to consider them in the so-called
near-near horizon extremal Kerr (nNHEK) formalism
[26, 27, 39, 42] in the regime ε ≪ 1, with the assumption
that significant interactions between the QNMs should
take place only in the “near zone”,

r − r+

r+
= O(ε) (near zone). (18)

Still, it turns out that the nNHEK approximation is by
itself not sufficient neither for obtaining explicit expres-
sions for the overlap coefficients U123, V123 in the dynam-
ical system, nor to ensure the near resonance condition
(10). We therefore further restrict our attention to a sub-
set of QNMs which either have a low, ℓ = O(1), or high,
ℓ ≫ 1, angular momentum. The latter regime enables the
so-called “eikonal approximation”, where the long-lived
QNM spectrum becomes doubly resonant,

ω ≈ m− iε(N + ℓ+ 1)

2M
, (19)

so long as ε(N + ℓ) ≪ 1. QNMs with intermediate val-
ues of ℓ, or ones with ε(N + ℓ) & 1 are discarded. Here,
the idea is that the low ℓ modes provide a, possibly tran-
sient, pumping effect, and that the very high ℓ modes
dissipate away due to their exponential decay in time.
The hypothesis is thereby that they effectively decouple
from the truncated system, in much the same way as one
proceeds in weak wave turbulence [43].

The calculations required in order to find Unear
123 , V near

123

in the nNHEK and low/high ℓ approximation are still
substantial even in this range, but, in the end, there
appear several crucial simplifications in the structure of
Unear

123 , V near
123 :

• The time derivative is now with respect to a “slow
time” t̄, given by εt/(2M) in terms Boyer-Lindquist
time t.

• Dividing the QNM amplitudes up into

cq → chigh
q or clow

q (20)

according to whether ℓ is high or low and adopting
a chemical reaction notation for the interactions in-
ducing a temporal change in chigh

q , clow
q according to

the dynamical system (16), the dominant channels
turn out to be

(high),(high) → (high)

(high),(low) → (high)

(high),(low) → (low)

(high),(high) → (low).

(21)



5

In each case, the corresponding “transition ampli-
tudes” Unear

123 , V near
123 can be found explicitly, see Sec.

VI C, App. K.

• These transition amplitudes imply “selection rules”
for the “m” QNM frequency labels, which are a
reflection of the fact that the background spacetime
is axisymmetric.

• Additionally, there are selection rules for the ℓ
QNM frequency labels corresponding to those for
the addition of angular momentum in quantum me-
chanics.

D. Equilibrium

A distribution {cq} of QNMs such that

d

dt
ceq

q = 0 (22)

for all high and low ℓ QNMs q in the nNHEK approxima-
tion is considered an “equilibrium distribution”, because
for such a distribution, the corresponding metric, geq

ab,

geq
ab = ḡab + Re S†

abΦeq + xeq
ab. (23)

will not change over a parametrically large Boyer-
Lindquist time scaling like some inverse power of the ex-
tremality parameter ε.

Finding an equilibrium distribution amounts to solving
the quadratic system of equations

0 =
∑

2,3

[

Unear
123 ceq

2 c
eq
3 + V near

123 ceq
2 (ceq

3 )∗
]

. (24)

Using non-trivial simplifications of our dynamical system
in the nNHEK limit and high/low ℓ approximation, we
are able to find such a solution based on scaling consid-
erations. It has the form

ceq
Nℓm ∝ C low · δN,0δm,0 · 2− ℓ

2 ℓ− 7
2 , (25)

where C low is a certain weighted sum of the amplitudes of
the low ℓ amplitudes, which may be viewed as a manifes-
tation of the aforementioned pumping effect. We observe
that the distribution is decreasing like a dyadic exponen-
tial in ℓ, and we interpret this as saying that equilibrium
is achieved when the QNM amplitudes are non-zero only
for low ℓ (and zero m). We view this as a manifestation
of an inverse cascade, hence a kind of “weather” see e.g.,
[44] in the context of oceanography.

Note that our equilibrium solution only involves an
infinite tower of axisymmetric modes undergoing 3 wave
interactions. On the other hand, as we have described,
[23] consider the coupling between 3 waves with non-
vanishing magnetic mode numbers ±m and 2m. In order
to understand more fully the validity of their truncation
and the relationship to ours, one would have to study
our dynamical system outside the axisymmetric sector.
While we give the prerequisite formulas for the overlap
coefficients, we leave such an analysis for future work.

E. Connection to quadratic QNMs

Finally, we wish to clarify the relationship between our
perturbative solutions and quadratic QNMs [3, 4, 6, 7].
For instance, the starting point of [3], like ours, is (81),
where each ‘φ’ on the right side is a QNM at linear order.
The approach by [3] is to view ‘φ’ on the left side as the
second-order correction. They solve Eq. (81) essentially
by the usual method of separation of variables. However,
given that the spectrum of QNMs is generally not reso-
nant for slowly rotating Kerr black holes, the resulting
second order ‘φ’ is in general not expected to be close to
a QNM nor to be particularly long-lived.

By contrast, we consider near extremal Kerr black
holes for which the zero-damped modes are very nearly
resonant and long-lived. In our approach, we project
Eq. (81) onto such QNMs, thereby effectively assuming
that (81) may be solved using only their contribution to
the retarded Green’s function for the Teukolsky equation
for a near-extremal Kerr black hole. Thus, we assume
that the metric perturbation can, in effect, be consid-
ered to be dominated by the zero-damped QNMs. As
described, this assumption leads to a dynamical system
for the QNM amplitudes, cq, not obtained by [3]. Unlike
[3], we do not divide the metric perturbation, nor the
cq’s, into first- and second-order contributions. Instead,
we think of Eq. (16) as a self-consistent approximation
which takes into account any gradual drift of cq ampli-
tudes away from their constant values in linear order.

Our analysis is thus complementary to typical ap-
proaches to QQNMs, and applies to physical regimes
dominated by resonances. We refer to our modes as res-
onant quadratic QNMs (rQQNMs). As triplets of mode
frequencies are not in general commensurate, rQQNMs
are restricted to special regimes such as near-extreme
Kerr. One other example where such resonant dynamics
become important is within the gravity-fluid correspon-
dence for large Schwarzschild-AdS [45, 46], which leads
to highly turbulent dynamics [47, 48]. The situation
changes, however, if one considers third order interac-
tions, since resonant quartets of modes do generically oc-
cur, thus making resonant cubic QNMs (rCQNMs) rather
common [5]. We leave the investigation of such higher or-
der interactions for future work.

This paper is organized as follows. In Sec. II, we in-
troduce our notation related to the Kerr spacetime and
recall its near-near horizon extreme Kerr (nNHEK) scal-
ing limit as ε → 0. In Sec. III we recall some of relevant
portions of the Teukolsky- [38, 49] and GHP (for Geroch,
Held and Penrose [50]) formalisms, as well as our defini-
tion of the bilinear form [41] (called a “scalar product” in
this work) between solutions of Teukolsky’s equation. In
Sec. IV A, we derive the general form of our dynamical
system for the QNM amplitudes, however without taking
as yet the near extremal condition ε ≪ 1 into account. In
Sec. V, we analyze QNMs in the nNHEK limit. In par-
ticular, we compute the scalar products of QNMs in the
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nNHEK approximation. Building in part on this anal-
ysis, we then consider in Sec. VI the simplifications in
the detailed form of our dynamical system arising from
ε ≪ 1. In Sec. VII, we derive equilibrium distributions
for the QNM amplitudes. A considerable amount of tech-
nical detail is deferred to various appendices.

Notations and conventions We generally follow the
conventions of [51], with the exception of the signature
of gab which is (+,−,−,−) in this paper. When acting on
weighted GHP scalars [50], Lξ denotes the intrinsically
defined GHP-invariant Lie-derivative introduced in [52].
An overbar over a quantity as in X̄ is associated with
a scaling limit (explained in detail below), and is not to
be confused with the complex conjugate. The complex
conjugate of a number z ∈ C is denoted by z∗. O(x)
denotes a function ≤ const.x for all x ≥ x0.

II. KERR AND ITS EXTREMAL SCALING
LIMITS

The limit of a family spacetimes (M (ε), gab(ε)) as a
parameter ε tends to some value depends on which coor-
dinates one holds fixed as that limit is taken — or, more
mathematically, on the family of diffeomorphisms used to
identify the spacetimes M (ε) with a reference spacetime
manifold [53].

In this paper, we consider the limit of the subextremal
Kerr solutions in which the extremality parameter (1)

ε tends to zero, where r± = M ±
√
M2 − a2 are the

inner and outer horizon radii in Boyer-Lindquist (BL)
coordinates (26). The so-called “far limits” and “near
limits” correspond to specific identifications. In the far
limit, the extremality parameter ε is taken to zero fixing
BL coordinates (t, r, θ, φ), in which the Kerr metric is

ds2 =

(

1 − 2Mr

Σ

)

dt2 +
4Mar sin2 θ

Σ
dtdφ − Σ

∆
dr2

− Σdθ2 − (r2 + a2)2 − ∆a2 sin2 θ

Σ
sin2 θdφ2,

(26)

where

∆ = r2 + a2 − 2Mr, (27a)

Σ = r2 + a2 cos2 θ. (27b)

In the far limit the metric is simply given by (26) with
a = M . That limit is naturally adapted to observers that
dwell far away from the black hole, such as those mea-
suring gravitational radiation at infinity. The far limit,
however, fails to accurately describe the physics as expe-
rienced by near-horizon observers.9 To portray the ex-

9 For instance, in the far limit the coordinate location of the in-
nermost stable circular orbit (ISCO) tends to the event horizon,
while the proper distance between the horizon and the ISCO
diverges as log ε [39], see also [54, 55].

perience of these near-horizon observers which co-rotate
with the horizon in the far limit, one can adopt a new set
of coordinates [26, 39, 42] which “stretch out” the near-
horizon throat region and co-rotate the black hole. We
consider the so-called “near near horizon extremal Kerr
(nNHEK) scaling” where ε is taken to zero at the same
rate as the coordinates are scaled10, or

t̄ =
tε

2M
, x̄ =

x

ε
, θ̄ = θ, φ̄ = φ− t

2M
, (28)

where

x =
r − r+

r+
. (29)

In other words, in the nNHEK limit we identify the space-
times M (ε) by identifying points with the same barred
coordinates x̄µ (28).

In nNHEK limit, the metric can be thought of as a
fibration over a 2-dimensional AdS-spacetime ds̄2 with a
constant11 electromagnetic field Ā [26],

ds2
nNHEK = −M2

[

(1 + cos2 θ̄)
(

ds̄2 + dθ̄2
)

+
4 sin2 θ̄

1 + cos2 θ̄

(

dφ̄+ Ā
)2
]

,

(30)

where

ds̄2 = − fdt̄2 +
dx̄2

f
, (31a)

f =x̄(x̄+ 2), (31b)

Ā =
f ′

2
dt̄ (31c)

are geometric data on the base AdS2-spacetime. The
nNEHK spacetime is known [26] to possess a continu-
ous12 isometry group SL2(R) × U(1) which enhances the
continuous isometry group R × U(1) of Kerr comprised
of time-translations and rotations.

III. TEUKOLSKY FORMALISM

A. NP tetrads

Perturbative calculations in Kerr are much simpli-
fied using a complex null (Newman-Penrose, NP) tetrad
aligned with its principal null directions such as e.g., the

10 One may also consider the so-called “NHEK scaling” which
zooms in on length scales intermediate between the near NHEK
zone and the far zone [27, 39].

11 We mean that ⋆̄dĀ is constant.
12 Discrete isometries will be discussed in Sec. C.
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Kinnersley frame,

la =
1

∆

[ (

r2 + a2
)

∂t + ∆∂r + a∂φ

]a
, (32a)

na =
1

2Σ

[ (

r2 + a2
)

∂t − ∆∂r + a∂φ

]a
, (32b)

ma =
1√

2(r + ia cos θ)

[

ia(sin θ)∂t + ∂θ + i(csc θ)∂φ

]a
,

(32c)

where xµ = (t, r, θ, φ) are the BL coordinates. The Kerr
metric takes the form

gab = 2l(anb) − 2m(am̄b) (33)

in terms of the tetrad. Its form remains unchanged
under a local rotation preserving the real null pair
and transforms the NP frame to (la, na, eiΓma, e−iΓm̄a),
and also under a local boost preserving the directions
of the real null pair, transforming the NP frame to
(Λla,Λ−1na,ma, m̄a). Here, Λ, Γ are smooth functions
of real value which may be combined into the complex
function λ2 = ΛeiΓ.

The Kinnersley frame is singular in the nNHEK scaling
when ε → 0, which can be counteracted by choosing
λ = ε [55]. With this, the limit of the above NP frame
in nNHEK is [55]

la =

[

1

f
∂t̄ + ∂x̄ − (x̄+ 1)

f
∂φ̄

]a

(34a)

na =
1

2M2
(

1 + cos2 θ̄
)

[

∂t̄ − f∂x̄ − (x̄+ 1)∂φ̄

]a
, (34b)

ma =
1√

2M(1 + i cos θ̄)

[

∂θ̄ +
i
(

1 + cos2 θ̄
)

2 sin θ̄
∂φ̄

]a

,

(34c)

in the coordinates x̄µ = (t̄, x̄, θ̄, φ̄) of (28).

B. GHP formalism and Hertz potentials

The GHP formalism [50] is a refinement of the
NP formalism as described e.g., in [51, 56]. The
main difference between the two apart from notations
is that in GHP, only properly weighted scalars un-
der a combined frame boost+rotation (la, na,ma) →
(λλ̄la, (λλ̄)−1na, λλ̄−1ma) are considered, whereas all
non-weighted scalars become part of a GHP covari-
ant derivative. A properly weighted scalar, aka “GHP
scalar”, η, of weights (p, q) by definition transforms as

η → λpλqη, (35)

written as η ⊜ {p, q}. Examples of GHP scalars in any
spacetime are

Ψ0 = − Cabcd l
amblcmd ⊜ {4, 0} , (36a)

Ψ1 = − Cabcdl
anblcmd ⊜ {2, 0} , (36b)

Ψ2 = − 1
2Cabcd(lanblcnd + lanbmcm̄d) ⊜ {0, 0} , (36c)

Ψ3 = − Cabcdl
anbm̄cnd ⊜ {−2, 0} , (36d)

Ψ4 = − Cabcd n
am̄bncm̄d ⊜ {−4, 0} , (36e)

as well as the “optical scalars”,

κ = malb∇bla ⊜ {3, 1} , (37a)

τ = manb∇bla ⊜ {1,−1} , (37b)

σ = mamb∇bla ⊜ {3,−1} , (37c)

ρ = mam̄b∇bla ⊜ {1, 1} . (37d)

In Kerr, we have κ = κ′ = σ = σ′ = 0,Ψi = 0 for i 6= 2 in
an NP frame aligned with the principal null directions as
considered in this paper, and in nNHEK, we additionally
have ρ = ρ′ = 0. A prime generally means the GHP
operation la ↔ na, ma ↔ m̄a. The values of all the
non-zero GHP scalars for the frame (34) in nNHEK are
recalled in App. A.

The GHP derivative is defined by

Θaη =
[

∇a − 1
2 (p+ q)nb∇alb + 1

2 (p− q)m̄b∇amb

]

η

≡ [∇a + la(pǫ′ + qǭ′) + na(−pǫ− qǭ)

−ma(pβ′ − qβ̄) − m̄a(−pβ + qβ̄′)]η.

It is covariant in the sense that it maps properly weighted
GHP quantities to such quantities. The second line fea-
tures the non-properly weighted remaining spin coeffi-
cients ǫ, ǫ′, β, β′ in the GHP formalism. Their values in
the frame (34) in nNHEK are recalled in App. A.

In the GHP formalism, Teukolsky’s operator [38, 49]
acting on a GHP scalar η ⊜ {2s, 0} (i.e, spin s) reads [57]

sOη :=
[

gab(Θa + 2sBa)(Θb + 2sBb) − 4s2Ψ2

]

η, (38)

for s ≥ 0, where Ba := −(ρna−τm̄a) ⊜ {0, 0}. For s ≤ 0,
we have sO := (−sO)′ in terms of the GHP priming op-
eration. The GHP covariant directional derivatives along
the NP tetrad legs are often easier to deal with compu-
tationally, and denoted traditionally by

Þ = laΘa = la∇a − pǫ− qǭ (39a)

Þ
′
= naΘa = na∇a + pǫ′ + qǭ′ (39b)

ð = maΘa = ma∇a − pβ + qβ̄′ (39c)

ð
′
= m̄aΘa = m̄a∇a + pβ′ − qβ̄. (39d)

For a linearized metric perturbation δgab satisfying
δGab = 8πTab, the spin13 s = ±2 perturbed Weyl scalars

13 In the GHP formalism, the spin is s = (p − q)/2.
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+2ψ := − δCabcd l
amblcmd ⊜ {4, 0} , (40a)

−2ψ := − δCabcd n
am̄bncm̄d ⊜ {−4, 0} , (40b)

satisfy the sourced Teukolsky equations [38, 49]

sOsψ = sSabTab. (41)

Here, sO are the spin s Teukolsky operators, see Eq.
(38). The operators sSab prepare the Teukolsky source.
For s = +2, we have +2Sab ≡ Sab, where

SabTab = (ð − τ̄ ′ − 4τ)
[

(Þ −2ρ̄)Tlm − (ð − τ̄ ′)Tll

]

+ (Þ−ρ̄− 4ρ)
[

(ð − 2τ̄ ′)Tlm − (Þ−ρ̄)Tmm

]

, (42)

and for s = −2, we set −2Sab := (Sab)′. Eq. (42) is valid
in Kerr and simplifies in nNHEK because ρ = ρ′ = 0 in
that case.

So-called Hertz potentials are solutions to the formal
adjoints of the Teukolsky equations sO†

sΦ = 0, see e.g.,
[35] for the GHP forms of the operators sO†. Given a
Hertz potential, the metric perturbation

δgab = Re
(

sS†
sΦ
)

ab
(43)

is a solution to the linearized Einstein equation δGab = 0
(for either s = ±2) [36, 37]. The well-known concrete
expression for the operator sS† in GHP form is +2S† ≡
S† for s = +2, where

(

S†Φ
)

ab
= −lalb(ð−τ)(ð+3τ)Φ−mamb(Þ−ρ)(Þ+3ρ)Φ+ l(amb)

[

(Þ−ρ+ ρ̄)(ð+3τ)+(ð−τ+ τ̄ ′)(Þ+3ρ)
]

Φ. (44)

For s = −2, we set −2S† := (S†)′. Eq. (44) is valid in
Kerr and simplifies in nNHEK because ρ = ρ′ = 0 in that
case.

C. Bilinear form

In this paper, we will prominently use an invariant,
conserved bilinear form between spin s solutions of the
homogeneous Teukolsky equation introduced in [41]. For
the convenience of the reader, we briefly recall the defini-
tion of this object. The bilinear form [41] is based on the
t − φ reflection isometry J and a “symplectic current”,
πa [58]. This current depends on a pair of GHP scalars

−sφ ⊜ {−2s, 0} and sψ ⊜ {2s, 0} and is defined as [58]

πa = sψ(Θa − 2sBa)−sφ− −sφ(Θa + 2sBa)sψ, (45)

where Ba ≡ −(ρna − τm̄a) ⊜ {0, 0}. The correspond-
ing bilinear form — associated with a time slice C and
formally similar to the Klein-Gordon inner product of a
charged scalar field — is

ΠC [sψ,−sφ] =

∫

C

πa[sψ,−sφ]dSa . (46)

The current πa is conserved whenever sOsψ = 0 =

sO†−sφ [58]. In fact, its construction is precisely such
that

∇aπ
a = −sφ(sOsψ) − (sO†

−sφ)sψ. (47)

By Gauss’ theorem, the bilinear form is therefore un-
changed if we deform C locally. Furthermore, it follows
from the intertwining relation (C7) that if sOsψ = 0,

then −sφ := Ψ
−2s/3
2 J sψ, where J is the action of the

t-φ reflection isometry of Kerr on GHP scalars (see App.
C), solves sO†−sφ = 0. Consequently, the “scalar prod-
uct”,

〈〈sψ1, sψ2〉〉C := ΠC

[

sψ1,Ψ
− 2s

3

2 J sψ2

]

(48)

is not only invariantly defined for any two GHP scalars of
weights ⊜ {2s, 0} satisfying the spin s Teukolsky equa-
tion sOsψi = 0, i = 1, 2, but is also unchanged under
local changes of the time-slice C [41].

We will write the scalar product as 〈〈sψ1, sψ2〉〉t when
referring to a constant t slice in BL coordinates in Kerr,
and as 〈〈sψ1, sψ2〉〉t̄ when referring to a constant t̄ slice in
nNHEK, see Eq. (28). For solutions sOsψi = 0, i = 1, 2
with a sufficient decay towards the horizon and spatial
infinity, the scalar product does not depend on either t
respectively t̄.

In the case |s| = 2, the bilinear form Π has a relation
with the symplectic form W of vacuum general relativity
[59] first pointed out in [58]. Letting φ ⊜ {−4, 0} be
any solution of O†φ = 0 and hab be any solution to the
linearized EE, the relation is

W [h,S†φ] = Π[Wh, φ] +B[h, φ] (49)
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where B is a term associated with the boundary ∂C

whose explicit form is given in [41, App. A]. For a pair
hab, φ such that this boundary term does not contribute,
we may combine the above relationship between Π and
W , the relationship between Π and the scalar product,

and Eq. (C12b) to obtain a useful interplay between Þ
4

and the scalar product:

〈〈ψ,Þ4
φ∗〉〉 = Π[ζ4Jψ,Þ4

φ∗]

= 4Π[ζ4Jψ,WS†∗φ∗]

= 4W [S†ζ4Jψ,S†∗φ∗]

= 4W [S†∗ζ∗4Jψ∗,S†φ]∗

= 4Π[WS†∗ζ∗4Jψ∗, φ]∗

= Π[Þ
4
ζ∗4Jψ∗, φ]∗

= Π[ζ−4J ζ4J Þ
4 J ζ∗4ψ∗, φ]∗

= 〈〈ζ4 Þ
′4
ζ∗4ψ∗, φ〉〉∗,

(50)

where we assumed that Oψ = 0, ψ ⊜ {4, 0}, and where

we used J ÞJ = Þ
′
,J ζJ = ζ, as follows from the iden-

tities provided in App. C
Eq. (47) and the intertwining relation (C7) imply that,

if +2ψ, +2η ⊜ {4, 0} are such that O+2η = 0 but not

necessarily O+2ψ = 0 , then

d

dt
〈〈2η, 2ψ〉〉t =

∫

{x0=t}

(ζ4J 2η)(O2ψ)T adSa, (51)

where here and in the following, we use the shorthand

ζ := Ψ
− 1

3

2 , and where T a is the normalized asymptoti-

cally timelike Killing field of Kerr given in BL coordinates
by T a = (∂t)

a.
Further properties of the scalar product (48) are [41]:

It is symmetric, real linear in each entry, and QNMs are
orthogonal with respect to it. QNMs are exponentially
growing near the horizon and infinity on a constant BL
time t slice, so the definition of the scalar product as an
integral over such a slice needs to be done with care by
introducing a regulator, see [41, 60] and below in Sec.
IV A. The scalar product is not positive definite nor even
real valued, reflecting in a sense the dissipative nature of
the dynamics of Teukolsky’s equations in Kerr.

IV. THE DYNAMICAL SYSTEM FOR QNM
AMPLITUDES

A. Mode solutions

Mode solutions to the Teukolsky equations are denoted
by sΥq ⊜ {2s, 0} in this paper , where q stands for the col-
lection of mode labels, usually q = (ω, ℓ,m). They are by
definition solutions to the homogeneous spin s Teukolsky
equation sOsΥ = 0 for s ≥ 0 and to the adjoint homoge-
neous spin s Teukolsky equation −sO†

sΥ = 0 for s ≤ 0.
The mode solutions may be given in separated form,

sΥℓmω(xµ) = e−iωt+imφ
sRℓmω(r)sSℓmω(θ), (52)

where m ∈ Z and ω ∈ C, and where xµ = (t, r, θ, φ) are
the BL coordinates. In the Kinnersley frame, the spin
s Teukolsky equation can be separated into an angular
equation,

[

1

sin θ

d

dθ

(

sin θ
d

dθ

)

+

(

sEℓm(aω) − m2 + s2 + 2ms cos θ

sin2 θ
+ a2ω2 cos2 θ − 2aωs cos θ

)]

sSℓmω(θ) = 0, (53)

and a radial equation,

[

∆−s d

dr

(

∆s+1 d

dr

)

+

(

H2 − 2is(r −M)H

∆
+ 4isωr + 2amω − a2ω2 − sEℓm(aω) + s(s+ 1)

)]

sRℓmω(r) = 0, (54)

where H := (r2 + a2)ω − am, and where sEℓm(aω) is a
separation constant [38, 49]. In our convention, it only
depends on |s|.

In order for Eq. (52) to represent a smooth GHP scalar,
one has to impose that sSℓmω(θ) remain finite at the poles
θ = 0, π. This leads to a discrete set of modes sSℓmω and
separation constants sEℓm(aω) labeled by ℓ for each fixed
real ω and m. Traditionally, the indexing is chosen such
that ℓ ∈ Z

≥max(|m|,|s|). sSℓmω(θ) are referred to as spin-
weighted spheroidal harmonics [12–14]. We choose them

such that, for ω ∈ R, we have sSℓmω(θ)∗ = sSℓmω(θ) and

∫ π

0

dθ sin θ sSℓmω(θ)sSℓ′mω(θ) = δℓℓ′ . (55)

The forms of the radial and angular equations in nNHEK
will be recalled below in Sec. V.

We now discuss boundary conditions of the radial
equation in terms of the Kerr tortoise coordinate dr∗ =
(r2 + a2)/∆dr. For fixed s, ℓ,m, ω one considers the so-
lutions sRin and sRup fixed by the asymptotic conditions
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(s ≤ 0)

sRin ∼ e−ikr∗

∆s
, r∗ → −∞, (56a)

sRup ∼ eiωr∗

r2s+1
, r∗ → ∞, (56b)

where k ≡ ω − mΩH , where ΩH = a/(2Mr+) is the an-
gular frequency of the outer horizon, and where we recall
that the radii of the inner- and outer horizons (roots of
∆) are denoted by r±, respectively. The asymptotic con-
ditions for s > 0 are analogous to Eq. (56), except that
we chose a prefactor in such a way that (57) holds:

1
4Þ

4
−2Υ∗

(−ω∗)ℓ(−m) = +2Υωℓm, (57)

for both in and up modes.14 Indeed, proportionality al-
ready follows from Eq. (C13) because both sides are in
the kernel of Teukolsky’s operator O for spin s = +2, and
both sides satisfy the same boundary conditions up to a
constant. The choice of that constant fixes the precise
prefactor in the boundary conditions in the case s = −2
in Eq. (56).15

The intertwining relations (C7), (C8) imply that the
t−φ and θ reflection maps J and I map modes of a given
boundary condition again to such a mode. Precisely, the
formulas needed in this paper are:

I(−2Υin,up
ωℓm )∗ = −2Υin,up

(−ω∗)ℓ(−m), (58a)

Ψ
− 4

3

2 J +2Υin,up
ωℓm = +2C−2Υout,down

(−ω)ℓ(−m), (58b)

which may be demonstrated noting that both sides of
each equation are annihilated by O† and satisfy the pre-
requisite boundary conditions (56). The second relation
may be viewed as the definition of the out and down
modes; in particular, it fixes the normalizations.

In more conventional terms, the relations (58) corre-
spond to well-known symmetries of the radial and angu-
lar mode solutions which may easily be recovered from
these relations by substituting the definitions of J and
I in the Kinnersley frame.

Eqs. (56) imply the absence of incoming radiation from
the past horizon and past null infinity, respectively. Eqs.
(56) are somewhat informal because they do not actually
select uniquely a solution in the case Imω < 0: we may
clearly add a multiple of the subdominant solution as
r∗ → ±∞ and this will not change the asymptotic behav-
ior. In the standard approach, mode solutions are typi-
cally obtained via series expansions [62]. These involving
three-term recurrence relations for the series coefficients.
If one selects a “minimal solution” in the sense of [63],

14 See [61] for the precise value of this prefactor. It is given below
in Eq. (108) for the scaling limit(s) that we require in this paper.

15 The other s values 0, 1 can be dealt with similarly but this is not
relevant for this paper.

then the series representation converges at the horizon
(in) or infinity (up), which is the actual technical defini-
tion of these modes. Imposing both the in and up condi-
tions simultaneously determines the discrete set of QNM
frequencies [62] ωNℓm ∈ C.16. We follow the labelling of
[62], where N = 0, 1, 2, . . . are the so-called “overtone”
numbers. The corresponding QNM mode functions will
also be denoted by sΥNℓm ≡ sΥωN ℓm. It is known that
ImωNℓm < 0 for QNM frequencies in Kerr [64].

As shown in [41], QNMs are orthogonal with respect to
the scalar product defined in Sec. III C, i.e., there exists
a constant sANℓm such that

〈〈sΥ1, sΥ2〉〉t = sAN1ℓ1m1
δm1m2

δℓ1ℓ2
δN1N2

, (60)

where sΥ1 ≡ sΥN1ℓ1m1
etc., and where it is understood

that an appropriate regulator must be chosen in order to
define the integral over the constant BL time t slice [41].
This regulator can be implemented in different ways. In
[41], the integration over the constant t slice C enter-
ing the definition of the scalar product via Eq. (46) was
replaced by a complex contour, moving the radial BL
coordinate r into the complex plane (note that this pro-
cedure is unaffected by local changes of the complex con-
tour since πa in Eq. (46) is a conserved current). In this
paper, we shall employ a “minimal subtraction (MS)”
scheme [60], which is formally equivalent.

In the MS scheme, the integration over the constant t
slice in Eq. (46) is first restricted to r+ + δ < r < δ−1,
wherein δ > 0 is a regulator that we would like to take
to zero. Eq. (46) is then replaced by

Πt[sψ,−sφ] = F.P.δ→0

∫

C (t,δ)

πa[sψ,−sφ] dSa , (61)

where the cutoff integration domain C (t, δ) := {x0 =
t, r+ + δ < x1 < δ−1} is referring to BL coordinates
xµ = (t, r, θ, φ), and where F.P. means the finite part
in a Laurent expansion. When sψ,−sφ are solutions to
the Teukolsky equations with appropriate analytic con-
tinuations in r as described in [41], then taking the finite
part is the same as a contour integral over an appropriate
complex-r contour. In the following, the scalar product
(48) is understood with the MS regulated definition of
(61).

Eq. (50) implies a relationship between the normal-
ization constants sANℓm for QNMs for opposite spins

16 To actually find the QNMs in practice, one may make the ansatz
[62]

R(r) = eiωr(r − r−)−1−s+iω+iσ+ (r − r+)−s−iσ+ f(r), (59)

where σ+ = (ωr+ − am)/(r+ − r−) and f(r) =
∑∞

n=0
dn

(

r−r+

r−r−

)n

. In this ansatz, the coefficients dn are deter-

mined to be a “minimal solution” [63] to a three-term recursion
relation [62]. Then the series is uniformly absolutely convergent
as r → ∞, r+, and thus characterizes the QNMs.
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s = ±2. To see this, we use Eq. (57) in the follow-
ing sequence of equalities, for QNM labels (ω1, ℓ1,m1)
and (ω2, ℓ2,m2):

16〈〈+2Υω1ℓ1m1
,+2Υω2ℓ2m2

〉〉
= 〈〈Þ4

−2Υ∗
(−ω∗

1
)ℓ1(−m1),Þ

4
−2Υ∗

(−ω∗
2

)ℓ2(−m2)〉〉

= 〈〈ζ4 Þ
′ 4ζ∗4 Þ

4
−2Υ(−ω∗

1
)ℓ1(−m1),−2Υ(−ω∗

2
)ℓ2(−m2)〉〉∗.

(62)

It is well-known (see e.g., [65, Ch. 5]) that ζ4 Þ
′4
ζ∗4 Þ

4

is related to a Teukolsky-Starobinski (TS) identity [66,
67], stating that, for a suitable TS constant 2D

2
ωℓm,

ζ4 Þ
′4
ζ∗4 Þ

4
−2Υωℓm

=
(

ζ4ð
′4
ζ∗4ð

4 − 9M− 2
3 L2

T

)

−2Υωℓm

= (2Dωℓm)2
−2Υωℓm.

(63)

In the second line, LT is the GHP covariant Lie derivative

[52] with respect to T a = (∂t)
a. The value of (2Dωℓm)2

may be found e.g., by making use of the representation
in the second line and using the angular TS identities
[66, 67]. However, below, we will only need (2Dωℓm)2 for
the nNHEK geometry, where a more direct route based

on ladder operator properties of Þ,Þ
′

in nNHEK, see
App. F, may be used. Either way, having determined
(2Dωℓm)2, we find +2ANℓm via

+2ANℓm =
1

16
(2D

∗
(−ω∗

N
)ℓ(−m))

2
−2A

∗
Nℓ(−m). (64)

B. Retarded Green’s function and bilinear form

Below, we require the retarded Green’s function Gret

for the spin s = +2 Teukolsky operator O ≡ +2O. A
well-known mode expression for Gret in BL coordinates
xµ = (t, r, θ, φ) is [68, 69]

Gret(x, x′) =
∑

ℓ,m

∞+i0
∫

−∞+i0

dω e−iω(t−t′)eim(φ−φ′)gωℓm(r, r′)+2Sωℓm(θ)+2Sωℓm(θ′). (65)

Here and below, the sum stands for
∑∞

ℓ=2

∑ℓ
m=−ℓ, and the response kernel is defined as

gωℓm(r, r′) =
∆2(r′)

Wωℓm

[

Θ(r − r′)+2R
in
ωℓm(r′)+2R

up
ωℓm(r) + Θ(r′ − r)+2R

in
ωℓm(r)+2R

up
ωℓm(r′)

]

. (66)

We defined the step function as Θ(r) = 1 if r ≥ 0, Θ(r) =
0 if r < 0, and the ∆-scaled Wronskian W ≡ Wωℓm is
defined by

W = ∆3

(

+2Rup
d

dr
+2Rin − +2Rin

d

dr
+2Rup

)

. (67)

Properties of the radial and angular Teukolsky equations,
notably the absence of QNMs in the upper complex fre-
quency plane [64], imply that the response kernel is ana-
lytic for Imω > 0, which is reflected in the above choice
of integration contour for ω. The response kernel and
spheroidal harmonics have poles and branch cuts in the
lower complex ω-plane. For t > tp we may deform the
integration contour for ω to a large semi-circle in the
lower complex ω-plane and a contour along the branch

cut merging with ω = 0, at the expense of residue where
the Wronskian W ≡ Wωℓm happens to vanish. These
points in the complex ω-plane correspond precisely to the
QNM frequencies ωNℓm. It is generally accepted that this
procedure yields a decomposition [68]

Gret = Gqnm +Gcut +Garc. (68)

The pieces Garc and Gcut are generally associated with
the direct absorption by the black hole of gravitational
waves emitted by a compact source respectively with the
“Price tail” [70], respectively. In this work we assume to
be in a dynamical regime where the latter two compo-
nents are negligible, i.e., that one is in a dynamical era
long before the Price tail but after the absorption. Thus,
we shall generally approximate Gret by the QNM piece
Gqnm, given by
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Gqnm(x, x′) = 2π
∑

ℓ,m,N

∆2(r′)

dWωℓm/dω|ω=ωNℓm

e−iωNℓm(t−t′)eim(φ−φ′)
+2RNℓm(r)+2RNℓm(r′)+2SNℓm(θ)+2SNℓm(θ′).

(69)

Now we consider the definition of the t − φ reflection J
(C2), (C3), the value Ψ2 = −M/(r − ia cos θ)3 in the
Kinnersley frame, the QNM boundary conditions for s =
±2 (56), and the relation between dWωℓm/dω|ω=ωNℓm

and the scalar product +2ANℓm (60) between the QNMs,
see [41, Lem. 5]. Combining these, it follows that we
can—usefully for later—represent Gqnm as

Gqnm(x, x′) =
∑

q

1

+2Aq
+2Υq(x)

(

ζ4J +2Υq

)

(x′), (70)

where from now on, we subsume all QNM indices into a
multi-index

q = (N, ℓ,m). (71)

C. Dynamical system

Consider a 1-parameter family of metrics depending on
some parameter α of the form

gab(α) = gab + αhab(α), (72)

where gab is the metric of Kerr, and where hab(α) is
a non-linear perturbation. We may think of hab(α) in

terms of a formal perturbation series,

hab(α) ∼ h
(1)
ab + αh

(2)
ab + . . . (73)

though we will never consider the equations for the per-

turbation orders h
(n)
ab individually in a naive perturbation

theory, but instead work fundamentally with hab(α) up

to a certain order. Informally, we think of the h
(n)
ab as

being of order O(1), and we think of α as small, but suffi-
ciently large so as to induce weak non-linear effects when
we impose the Einstein equation (EE) Gab[g(α)] = 0.

In fact, we shall restrict ourselves to the leading effects
of the non-linearity in the EE, which appear at O(α2),
and are described by the equation

Eab[h] = 8π α Tab[h, h]. (74)

Here, Eab is the linear operator appearing in the lin-
earized EE,

Eab[h] ≡ 1

2

[

− ∇c∇chab − ∇a∇bh+ 2∇c∇(ahb)c

+ gab(∇c∇ch− ∇c∇dhcd)
]

, (75)

whereas 8πTab is minus the second order Einstein tensor,
i.e.,

−8πTcd[h, h] = − 1

2
(∇bh

ab − 1

2
gab∇bh)(2∇(dhc)a) − ∇ahcd) +

1

4
∇ch

ab∇dhab

+
1

2
∇bha

c(∇bhad − ∇ahbd) +
1

2
hab(∇c∇dhab + ∇a∇bhcd − 2∇(d∇|b|hc)a).

(76)

Eq. (74) is by itself of a comparable complexity as the
full non-linear EE. We now describe how to turn it into
a dynamical system for QNM amplitudes.

First, in order to connect Eq. (74) to the Teukolsky
formalism, we may employ the corrector tensor method
(GHZ-approach) [24]. In the GHZ approach, one shows
that – in practice order-by-order in α — that

gab(α) = gab + αhIRG
ab (α) + αxab(α), (77)

modulo certain gauge pieces (which we ignore), and mod-
ulo certain algebraically special pieces (which we likewise
ignore). Here, hIRG

ab is the so-called reconstructed part in
the ingoing radiation gauge (IRG),

hIRG
ab = Re S†

abφ, (78)

where S† is given by Eq. (44). We should think of the
Hertz potential φ(α) ⊜ {−4, 0} and the corrector xab(α),

as having formal expansions

φ(α) = φ(1) + αφ(2) +O(α2) (79a)

xab(α) = αx
(2)
ab +O(α2), (79b)

noting that the corrector is zero at order O(α0) [24,
35]. Therefore, when the GHZ decomposition hab(α) =
Re[S†φ(α)]ab + xab(α) is substituted into Eq. (74), we
may omit the corrector on the right hand side when work-
ing consistently to accuracy O(α2) for the deviations off
of Kerr. On the other hand, the corrector cannot be ne-
glected on the left side of Eq. (74), nor on the right side
if we were to increase our accuracy to O(α3).

We now apply Teukolsky’s source operator S [see Eq.
(42)] to Eq. (74). As shown by [24, 35], xab then drops
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out from the left side (to all orders in α), and we obtain17

S
{

E
[

Re(S†φ)
]}

= 8π αS
{

T
[

Re(S†φ),Re(S†φ)
]}

.
(80)

The expression on the right side may further be simpli-
fied by using intertwining relations between the operators
appearing in Teukolsky’s equation and the TS identities;
see App. C. One obtains

O(Þ
4
φ∗) = −16π αS

{

T
[

Re(S†φ),Re(S†φ)
]}

, (81)

where O ≡ +2O is the s = +2 Teukolsky operator. For
an essentially equivalent equation, see, e.g., [3, eq. 48].

Eq. (81) is a non-linear partial differential equation of
order six for φ. It does not appear to be of canonical
type, so it is unclear whether it is amenable to a rigorous

mathematical analysis or whether it is, in this form, prac-
tically useful. For us Eq. (81) will merely serve as the
starting point for deriving our dynamical system for the
QNM amplitudes. That dynamical system is not fully
equivalent to Eq. (81) because we will consider only the
QNM part (defined below) of φ as effectively contribut-
ing to the non-linear behavior. Our view is that even
though Eq. (81) might not be amenable to a mathemati-
cal analysis, the truncation to the QNM part will capture
relevant features of the weakly non-linear dynamics of the
EE in our regime.

To this end, we first recall the retarded Green’s func-
tion for the spin s = +2 Teukolsky operator O described

in Sec. IV B. Defining ψ := 1
4Þ

4
φ∗ ⊜ {4, 0} and us-

ing the Green’s function property of Gret, we have (here
T a = (∂t)

a is the asymptotically timelike normalized
Killing field of Kerr)

ψ(x) =

∫

M

Gret(x, x′)Oψ(x′)dV ′

=

t
∫

−∞

dt′
∫

{x′0=t′}

Gret(x, x′)Oψ(x′)T a′dS′
a

∼
t
∫

−∞

dt′
∫

{x′0=t′}

Gqnm(x, x′)Oψ(x′)T a′dS′
a

(82)

In the last step we have approximated the retarded
Green’s function by its QNM part, see Sec. IV B. This
should be understood as a condition on ψ, and therefore
indirectly on the solution to EE and the regime that we
consider. Effectively, we are assuming to be in an era
where the solution can be described by the non-linear
dynamics of QNMs, i.e. after the direct emission of grav-
itational waves exciting the spacetime, but long before
the late-time tail behavior kicks in.

At this stage, we substitute our previous expression
(70) for Gqnm. Setting

cq(t) := 〈〈+2Υq, ψ〉〉t, (83)

we thereby learn from relation (82) that

ψ(x) ∼
∑

q

1

+2Aq
+2Υq(x)

t
∫

−∞

dt′
d

dt′
cq(t′), (84)

where +2Υq are the spin s = +2 QNMs, and where +2Aq

are the norms of their scalar product, see Eq. (60), and

17 Similar equations have appeared e.g., in [3, 71]. The main dif-
ference to our argumentation is that we maintain, in principle,
control of the metric itself in the GHZ scheme [24, 35].

S†
ab is given in Eq. (44). If we assume that, initially,

the overlap (83) between ψ and a QNM is small, we can
neglect the lower boundary of the t′-integration and write

ψ ∼
∑

q

1

+2Aq
cq(t) +2Υq, (85)

which expresses ψ(x) as a sum of QNM of the homo-
geneous Teukolsky equation with time-dependent ampli-
tudes, cq(t).

Our aim is to derive a dynamical system for these am-
plitudes. We will obtain this system from Eq. (81). We
first need to obtain a relation similar to (85) for φ, where
1
4Þ

4
φ∗ = ψ. Eq. (57) implies that

φ =
∑

q

1

+2A∗
q

c∗
q(t)−2Υ−q∗ +O(α), (86)

because if we apply Þ
4

to this expression and use Eq.

(57), then we find 1
4Þ

4
φ∗ = ψ+(terms containing at

least one time derivative of cq(t)). Such terms are of
order O(α) by the dynamical equation and so may be ne-
glected self-consistently at our approximation level. We
have used a transformation formula (58), using the nota-
tion
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−q∗ = (−ω∗
Nℓ(−m), ℓ,−m). (87)

We are now ready to derive this system: We start by
taking the t-derivative of cq(t), see Eq. (83), into which

we substitute Eq. (51). We obtain

d

dt
cq(t) ∼

∫

{x0=t}

−2Υ−q(Oψ)T adSa, (88)

using again a transformation formula (58), and the nota-
tions −2Υ−q := ζ4J+2Υq (satisfying anti-QNM bound-
ary conditions), where

−q = (−ωNℓ(−m), ℓ,−m). (89)

For Oψ, we next substitute Eq. (81), and then we sub-
stitute (86). We thereby get

d

dt
cq1

(t) ∼ − 4πα
∑

q1,q2

∫

{x0=t}

T adSa×

−2Υ−q1
S
{

T
[

Re

(

1

+2A∗
q2

S†{c∗
q2

(t)−2Υ−q∗
2
}
)

,Re

(

1

+2A∗
q3

S†{c∗
q3

(t)−2Υ−q∗
3
}
)]}

.

(90)

The operators S†,S, T contain t derivatives, but when
these hit a coefficient cq2

(t) or cq3
(t), we may substitute

the expression for this derivative and get a term on the
right side that is at least of order O(α2). Such a term

may be neglected self-consistently at our level of approx-
imation. We may therefore pull out cq2

(t) or cq3
(t) and

write the above equation in a neater form. For this, set

U123(t) = − πδm1,m2+m3

A2A3

∫

{x0=t}

−2Υ−q1
ST
[

(S †̄
−2Υ−q∗

2
)∗, (S †̄

−2Υ−q∗
3
)∗
]

T adSa,

X123(t) = − πδm1,−m2−m3

A∗
2A

∗
3

∫

{x0=t}

−2Υ−q1
ST
[

S†
−2Υ−q∗

2
,S†

−2Υ−q∗
3

]

T adSa,

V123(t) = − πδm1,−m2+m3

A∗
2A3

∫

{x0=t}

−2Υ−q1
ST
[

S†
−2Υ−q∗

2
, (S†

−2Υ−q∗
3
)∗
]

T adSa

+ (q2 ↔ q3)

(91)

using condensed notations such as A1 ≡ +2Aq1
≡

+2AN1ℓ1m1
. These coefficients are defined in a GHP in-

variant way and can be computed in any frame, e.g. the
Kinnersley frame. The selection rules implied by the Kro-
necker δ’s in the magnetic quantum numbers mi are a
consequence of the axisymmetry of the spacetime and the
harmonic dependence e±imφ etc. of the modes involved
in the expressions.

Consistently neglecting contributions of O(α2) to the
excitation coefficients cq, the dynamical system is

d

dt
c1 = α

∑

2,3

(U123c2c3 + V123c2c
∗
3) , (92)

using condensed notations such as c1 ≡ cq1
≡ cN1ℓ1m1

.

Based on Eq. (91), one might have expected the appear-
ance of a term of the form X123c

∗
2c

∗
3. But the structures

of the operators S†,S, T imply that X123 = 0.18

Eq. (92) is the main result of the section. We expect
that, in the dynamical range considered, a solution to this
system will be accurate up to and including O(α). Then,
substituting the values of the amplitudes cq as functions
of t into Eq. (85), we obtain φ(x), which we thereby ex-

18 This may also be seen e.g., from [3], in the formula after Eq.
(50), when using Eqs. (39), (43) and (46). The point is that
here the Hertz potential appears with a complex conjugation
and this leads to the absence of some terms.
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pect to give an approximation up to and including O(α2)
of the metric through Eq. (77). More explicitly, let us
define the reconstructed part of the metric perturbation
in Eq. (77) as

hIRG
ab =

∑

q

Re S†
ab

[

1

2A∗
q

c∗
q(t)−2Υ−q∗

]

. (93)

After that, we define the GHZ corrector xab as

xab =

∫

Hab
a′b′Ta′b′ [hIRG, hIRG] dV ′ (94)

where Hab
a′b′

(x, x′) is the Green’s function of the GHZ
transport equations [40]. With this, the metric up to and
including order O(α2) is given by Eq. (77). We expect
Eq. (77) to give a good approximation of the metric in
a spacetime region where the non-linear perturbation of
Kerr can be considered as dominated by QNMs.

Concretely, the structure of the “overlap coefficients”
in Eq. (91) is excessively complicated, since each opera-
tor S,S† has a large number of terms when written out
completely and explicitly going back to the definitions
of the GHP operators in (42), (44), as has the quadratic
Einstein tensor Tab, see Eq. (76). Nevertheless, they can,
in principle, be computed numerically given a reasonable
approximation for the QNMs.

We will not attempt doing this here, but will instead
consider in the next sections the near extremal regime
ε ≪ 1, in which these expressions, while still involved,
simplify considerably. The simplifications include (a)
the overlap coefficients become time independent, (b) the
number of terms is reduced significantly, and (c) there ap-
pear selection rules in the sum over the QNM frequency
labels q1, q2, q3 which are not apparent.

V. QNMS AND BILINEAR FORM IN NNHEK

A. Matched asymptotic expansion

It has been observed that, when the Kerr black hole is
nearly extremal, there appears a sequence of long-lived
QNMs [8, 72]. Their frequencies and the corresponding
mode functions can be analyzed by a matched asymptotic
expansion approach initiated by [67], and further devel-
oped and applied in this context by [9–11, 18, 54, 72, 73]
and others. Some of the results of this type of analysis
have been corroborated by rigorous mathematical inves-
tigations [74–77].

In the following, we will make the assumption that
these long-lived modes give the dominant contribution

to the dynamical evolution of the metric for a paramet-
rically large time in the weakly non-linear regime. The
matched asymptotic expansion analysis in this section
will therefore be used below to simplify our dynamical
equation (92) for the excitation amplitudes of the QNMs.

In the matched asymptotic expansion approach which
we now recall, one solves the radial equation in two over-
lapping asymptotic regions and matches the solutions in
the region of overlap such that the boundary conditions
are satisfied. For simplicity, we restrict to QNMs which
are not axisymmetric (m 6= 0), though a variant of the
analysis applies also to the case m = 0, see App. D 1
for further discussion. One introduces a dimensionless
frequency parameter

ω̄ =
2M

ε

(

ω − m

2M

)

, (95)

such that

e−iωt+imφ = e−iω̄t̄+imφ̄. (96)

We make the approximation

ε ≪ 1 (97)

but place no restriction on the size of ω̄. Given that
ΩH = 1/(2M) for an extremal Kerr black hole, this scal-
ing basically amounts to the statement that |ω−mΩH | =
O(ε), i.e., one is considering frequencies near the su-
perrradiant threshold. With these quantities, we define
the following asymptotic regimes [recall the definition of
x = (r − r+)/r+]

near-zone: x ≪ 1 (98)

far-zone: x ≫ εω̄ (99)

overlap region: εω̄ ≪ x ≪ 1. (100)

The overlap region corresponds to the intermediate scal-
ing x ∼ εp for some chosen 0 < p < 1 e.g., p = 1/2.

At the leading order in this approximation, the spin-
weighted spheroidal functions are now evaluated ω =
mΩH = m/(2M), greatly simplifying the analysis. We
denote this leading-order contribution to the angular
eigenfunctions by

sSℓm := sSωℓm|ω= m
2M

(101)

where sSωℓm are the standard spin-weighted spheroidal
harmonics [13, 14, 56]. The angular equation becomes

[

1

sin θ

d

dθ

(

sin θ
d

dθ

)

+

(

sEℓm − m2 + s2 + 2ms cos θ

sin2 θ
+
m2

4
cos2 θ −ms cos θ

)]

sSℓm = 0, (102)
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where sEℓm := sEℓm(aω = m/2M) is a separation con-
stant, determined again by demanding regularity of the
solutions at θ = 0, π. The corresponding radial functions
in the far and near asymptotic regions will be denoted
by Rfar and Rnear, respectively. The full mode solutions
are correspondingly denoted by

sΥnear
ωℓm(x̄µ) = sR

near
ωℓm(x̄)sSℓm(θ̄)e−iω̄t̄+imφ̄ (103a)

sΥfar
ωℓm(xµ) = sR

far
ωℓm(x)sSℓm(θ)e−iωt+imφ, (103b)

where we note that the two solutions refer to different
coordinates, see Eqs. (28).

B. Near-zone solution

In the near horizon limit, we first perform a change of
variables in the Teukolsky master equation to the coor-
dinates x̄µ = (t̄, x̄, θ̄, φ̄) of Eq. (28). Then we transform
the master field as a GHP scalar of weights ⊜ {2s, 0},
as in Eq. (35), when we apply the ε-dependent boost to
the Kinnersley frame resulting in the frame (34) in the
limit as ε → 0. In this frame, coordinates, and limit
keeping x̄µ fixed, we drop the subleading terms of order
O(ε) in the potential in the radial Teukolsky equation 54,
resulting in

[

f−s d

dx̄

(

fs+1 d

dx̄

)

− sV
near

kℓm (x̄)

]

sR
near
kℓm = 0, (104)

where f = x̄(x̄+ 2),

k := ω̄ +m. (105)

and the potential is given by

sV
near

kℓm (x̄) = −3

4
m2 − s(s+ 1) + sEℓm − 2ism+

(mx̄+ k)(2is− k + 2isx̄−mx̄)

f
. (106)

The near-zone solution which is ingoing at the horizon is given by the hypergeometric function [55]

sR
near
in = sC x̄−s− ik

2

(

x̄

2
+ 1

)−s+i( k
2

−m)

2F1

(

sh+ − im− s, sh− − im− s; 1 − ik − s; − x̄

2

)

. (107)

where sCωℓm is a prefactor that is dictated by our nor-
malization conventions for the modes. It is −2Cωℓm = 1,

which using the ladder operator method for Þ
4

described
in App.F implies that

+2Cωℓm =
(−1)m

4

3
∏

j=0

[−ik + (2 − j)] . (108)

sh± is given by

sh± =
1

2
± 1

2
sη, sηℓm ≡

√

1 − 7m2 + 4sEℓm, (109)

noting that sh± = −sh±.19 The asymptotic behaviors
are

Rnear
in ∼ sCωℓmx̄

− ik
2

−s, x̄ → 0 , (110)

19 We will often omit the indices (s, ℓ, m) from sh±ℓm to lighten
the notation in the following.

at the horizon, and

sR
near
in ∼ sC

(

sa− x̄
−h−−s + sa+ x̄

−h+−s
)

, x̄ → ∞ ,
(111)

at infinity (the buffer region). Here, the asymptotic co-
efficients are given by

sa+ =
2h+− ik

2 Γ(1 − 2h+)Γ(1 − ik − s)

Γ(1 − h+ − im− s)Γ[1 − h+ − i(k −m)]
,

sa− = sa+|h+→h−
.

(112)

C. Far solution

The far-zone radial equation is given by the separated
Teukolsky equation (54) in extremal Kerr at ω = mΩH =
m/(2M), keeping only the dominant terms in the regime
x ≫ εω̄, see e.g., [18, A.4] for s = 0. For general s, the
equation is
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[

(x2)−s d

dx

(

(x2)s+1 d

dx

)

− sV
far

ℓm (x)

]

sR
far
ℓm = 0, (113)

(keeping in mind the definition (29) of x), where the po-
tential is given by

sV
far

ℓm (x) = −m
[

1

4
m(x+ 2)2 + is(x+ 2) +

3m

4
− 2is

]

+ sEℓm − s(s+ 1). (114)

The solution which is outgoing at infinity is given by
a combination of confluent hypergeometric functions,
M(a, b;x) [78, Sec. 13.14]. It is

sR
far
up =e− imx

2

[

x−h−−sM(1 − h− + im− s, 2h+; imx)

+ sQx
−h+−sM(1 − h+ + im− s, 2h−; imx)

]

,

(115)

with

sQ ≡ (−im)h+−h−
Γ(2h− − 1)Γ(h+ − im+ s)

Γ(2h+ − 1)Γ(h− − im+ s)
. (116)

This ratio defines the far “up” solution up to an overall

normalization.

D. Near horizon QNMs

A QNM is by definition a frequency ω at which the
solutions are purely outgoing at infinity and ingoing at
the horizon, see e.g., [79, 80] for reviews on QNMs. In
the matched asymptotic expansion, this occurs at the fre-
quencies where Rnear

in matches onto the far-zone outgoing
solution, or a−/a+ = Q. Explicitly, the QNM condition
is found [72] to be

Γ2(h+ − h−)Γ(h− − im− s)Γ(h− − im+ s)Γ (h− − i(k −m))

Γ2(h− − h+)Γ(h+ − im− s)Γ(h+ − im+ s)Γ (h+ − i(k −m))
(−imε)h−−h+ = 1, (117)

where we recall that m 6= 0 (the axisymmetric modes are
treated separately in App. D 1).

Condition (117) was analyzed by [73] for ℓ = m, by
[9] for sηℓm ∈ iR [see Eq. (109)] and later by [10, 11] for
general sηℓm, thereby clarifying some aspects of the anal-
ysis by [9] pertaining to the distinction between “damped
QNMs” and “zero-damped QNMs”, see Sec. VI B.

Consider first a real h+ > 1/2 [see Eq. (109)], and m >
0 – the case m < 0 can be obtained from the symmetry
ωNℓm = −ω∗

N(−m)ℓ. If we assume e.g., that mε < 1, as

will certainly be the case e.g., if ℓε ≪ 1, and as we will be
assuming in the following, the quantity (−imε)h−−h+ is
growing as (mε)1−2h+ . To compensate this in Eq. (117),
either the argument of the gamma function Γ(h+ − i(k−
m)), or of Γ(h− − h+) must land parametrically close, in
mε ≪ 1, to a pole i.e., a non-positive integer −N .

However, it turns out that, if h− − h+ ≈ −N is para-
metrically close, in mε ≪ 1, to a non-positive integer
−N , then the two linearly independent near zone solu-
tions degenerate, which invalidates the derivation of Eq.
(117) [10]. Indeed, [10] found no long lived QNMs in this
regime. Below (see Sec. VI B), we will consider a scal-
ing regime in which ℓ ≫ 1, but still ℓε ≪ 1. In such a
regime, we have Eq. (141), implying by Eq. (109) that
h+ = ℓ + 1 − 15m2/(16ℓ) + O[(m2/ℓ)2]. Thus, in that

scaling regime, it is impossible for h− − h+ = 1 − 2h+

to be parametrically close, in mε ≪ 1, to a non-positive
integer.

On the other hand, if h+−i(k−m), but not h−−h+, is
parametrically close to a non-positive integer −N , then
the analysis remains valid, suggesting that we obtain k,
and thereby the scaled QNM frequency (95) ω̄ = k −m,
up to an error of order O(ε2h+−1).

Actually, for a more honest estimate of the error, we
should recall that we made a simplification (101) set-
ting aω := m/(2M) in the angular equation (53), an-
ticipating that ω = mΩH + O(ε), and thereby effec-
tively ignoring order O(ε)-corrections in sEℓm(aω) =

sEℓm|aω=m/2M + O(ε). Including these as perturbative
corrections to the angular equation (53) using standard
results in perturbation theory of self-adjoint operators
[81], we can, in fact, only claim that we determined h±,
hence the scaled QNM frequency (95) ω̄ = k − m, up to
an error of order O(ε).

For complex h±, a similar argument can be made, pro-
vided that (−i)h−−h+ = eπ|h+−h−| becomes large, as will
be the case e.g., in a large ℓ limit and for m/(ℓ+ 1/2) >
0.74... [9, 10]. For complex h± but |h+ − h−| not neces-
sarily large, the argument appears to be more subtle [10],
but mathematical analysis [74] suggest that the second
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case of

ω̄Nℓm =

{

−i(h+ +N) +O(ε), if h+ ∈ R+

−i(h+ +N) + o(1), if h+ ∈ 1/2 + iR

(118)
where N is a non-negative integer, is still correct.
N is called the overtone number. Accordingly, we label

the QNM solutions of the radial equation (104) that we
consider in this article as sR

near
ωN ℓm ≡ sR

near
Nℓm. Actually,

in our applications, we will consider below the regime
ℓ ≫ m2, in which case h± is seen to be real and para-
metrically large, h± ∼ ℓ, i.e. we will be in the first case;
see Sec. VI B.

E. Bilinear form for near-horizon modes

Here we compute the scalar product of two spin s =
−2 QNMs [see Eq. (103a)] Υ1 = −2ΥN1ℓ1m1

, Υ2 =

−2ΥN2ℓ2m2
, assuming that m1,m2 both are nonzero, see

App. D 1 for the treatment of the remaining case of ax-
isymmetric modes. In the matched asymptotic expan-
sion, where the radial and angular integrations decouple
(see App.D), it is natural to split the bilinear form into
near and far zone contributions

〈〈Υ1,Υ2〉〉 = 〈〈Υ1,Υ2〉〉near + 〈〈Υ1,Υ2〉〉far. (119)

We may choose to split the integral in the scalar product
e.g., with the intermediate scaling x = c

√
4ε, c > 0 (or

equivalently, x̄ = c/
√

4ε) where the two solutions match.
We may use the orthogonality of the spheroidal functions

−2Sℓm to put the QNM frequencies ω̄N1ℓ1m1
, ω̄N2ℓ2m2

[see
Eq. (118)] at the same ℓ and m. We next use relations
(15.8.1) and (15.2.4) of [78] to express the near solution
in terms of a finite polynomial

−2R
near
Nℓm = x̄2− ikN

2

(

1 +
x̄

2

)−i
(

kN
2

−m
)

×

N
∑

j=0

−2P
(N)
j

(

− x̄

2

)j

(120)

where kN = ω̄Nℓm +m [see Eq. (118)],

−2P
(N)
j =

(−N)j(1 − 2h+ −N)j

j!(1 − h+ −N − im+ 2)j
, (121)

and where (x)n = Γ(x + n)/Γ(x) is the Pochhammer
symbol. Products of near-zone modes then reduce to the
sum

R1R2 = x̄−i
k1+k2

2
+4

(

1 +
x̄

2

)−i[ k1+k2
2

−m1−m2] N1+N2
∑

j=0

−2P
(N1,N2)
j

(

− x̄

2

)j

, (122)

using the shorthands Ri = −2R
near
Niℓimi

. This formula de- fines −2P
(N1,N2)
i . By a calculation outlined in App. D,

we find

〈〈Υ1,Υ2〉〉near = −δℓ1ℓ2
δm1m2

2
√

2M
10
3 2− ik1

2
− ik2

2 × (123)

N1+N2
∑

j=0

−2P
(N1,N2)
j

(−1)jΓ(j + α̂− 2)Γ(−j − α̂− β̂ + 1)[γ̂(α̂+ β̂ + j − 1) + ê(α̂+ j − 2)]

Γ(−β̂)
+O(εp),

where p = Re(h1+)/2+Re(h2+)/2 > 0, which is either =
1 or 1+η1/2+η2/2, depending on whether η is imaginary
or real [see Eqs. (118), (109)], where

α̂ = 4 − i

2
(k1 + k2), β̂ = −3 − i

2
(k1 + k2 − 4m) ,

ê = −4(2 − im), γ̂ = 4 − ik1 − ik2,

(124)

and where we use the shorthands k1 = kN1ℓm, etc. The

term on the right side without the O(εp)-contribution is
already vanishing for N1 6= N2. We have checked this for
a range of N1, N2 values numerically, since it does not
appear to follow straightforwardly from the complicated
expression for the sum in Eq. (V E). It may be demon-
strated by noting that 〈〈Υ1,Υ2〉〉near is to leading order
in ε equal to the bilinear form of the near solution in the
nNHEK geometry, where the orthogonality of the modes
can be shown by the same arguments as given in [41] in
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the case of Kerr.

At any rate, this suggests that O(εp) is actually the
value of 〈〈Υ1,Υ2〉〉far, which hence appears to be negli-
gibly small for ε ≪ 1, which we have also tested numer-
ically in several cases. Assuming that this is the case
generally, the normalization factor for the QNM modes
is found to be

−2ANℓm := 〈〈−2ΥNℓm,−2ΥNℓm〉〉 = −2A
near
Nℓm +O(εp),

where

−2A
near
Nℓm = (−1)NM

10
3 2−ikN + 7

2N !×
Γ(2h+ +N)Γ(−h+ − im−N + 3)

Γ(h+ − im+ 2)(h+ + im− 2)N
.

(125)

Some details of this computation may be found in App.
D, and in App. L from the viewpoint of SL2(R) repre-
sentations.

We may similarly compute the scalar product of two
spin s = +2 QNMs Υ1 = +2ΥN1ℓ1m1

, Υ2 = +2ΥN2ℓ2m2
,

again assuming that m1,m2 are both non-zero. +2R
near
Nℓm

is now given by

+2R
near
Nlm = +2CNℓmx̄

−2− ik
2

(

1 +
x̄

2

)−i( k
2

−m)
×

N
∑

j=0

+2P
(N)
j

(

− x̄

2

)j

,

(126)

where now

+2P
(N)
j =

(−N)j(1 − 2h+ −N)j

(1 − h+ −N − im− 2)jj!
, (127)

and where +2CNℓm has been defined in Eq. (108). From
this, the computation of +2A

near
Nℓm proceeds practically

along the same lines as above. Alternatively, we may use
(64). In the near zone, the computation of the prerequi-
site TS constant (63) is most straightforward using the

ladder operator formalism for Þ,Þ
′
in nNHEK described

in App. F. One finds, in nNHEK

(2D
near
Nℓm)2 = (2M

2
3 )−4

2
∏

j=−1

(h+ −im−j)(h++im+j−1)

(128)
and thereby, using (64)

+2A
near
Nℓm =

1

16
(2D−ω∗

N
ℓ(−m))

∗2(−2A
near
Nℓ(−m))

∗

= (−1)NM
2
3 2−ikNN !×

Γ(h+ + im+ 2)Γ(2h+ +N)Γ(−h+ − im−N + 3)√
2Γ(h+ − im− 2)Γ(h+ + im+N − 2)

.

(129)

VI. DYNAMICAL SYSTEM IN NEAR
EXTREMAL SCALING REGIME

A. Small extremality parameter ε ≪ 1

In this section, we exploit the simplifications for the
overlap coefficients (91) U123, V123 in our dynamical sys-
tem (92) arising in the near extremal regime ε ≪ 1.

We split the integrals in Eqs. (91) into the near and
far zone as delimited by the value x̄ = c/

√
4ε of the

scaled coordinate x̄, see Eqs. (28). In the near zone,
we substitute the near zone QNM Υnear

q , whereas in the

far zone, we substitute the far zone QNM Υfar
q , see the

discussion in Sec. V D. Correspondingly, we split

U123 = Unear
123 + U far

123, (130a)

V123 = V near
123 + V far

123, (130b)

where “near” and “far” mean the part of the radial inte-
grals implicit in U123, V123 in the near- and far zone.

Our central hypothesis from now is that the far zone
contributions are parametrically small in ε. To support
this claim, we could argue as in the similar case of the
scalar products between the QNMs, see App. D, where
we give evidence that the portion coming from the near
zone dominates. In fact, the analysis of the near zone
radial integrals in App. I shows that their integrand de-
cays as x̄ → ∞, indicating that the far zone contribution
is indeed negligible.

According to our hypothesis, we therefore rewrite our
dynamical system (92) as

d

dt̄
c1 = α

∑

2,3

(Unear
123 c2c3 + V near

123 c2c
∗
3) . (131)

Note that, from now, we write our dynamical system in
terms of the slow time t̄ of Eq. (28), and correspond-
ingly, we have to use the integration element T̄ adS̄a in
the overlap coefficients (91), where T̄ a = (∂t̄)

a is the
timelike Killing field corresponding to the slow time t̄,
and dS̄a is the induced volume element on a constant t̄
surface in nNHEK.20

We next seek ways to simplify the complicated expres-
sions for the overlap coefficients, Eq. (91), exploiting that
ε ≪ 1 and the fact that we are working from now on only
in the near zone i.e., the nNHEK geometry, see Sec. II.
An object that appears in both overlap coefficients (91)

is the bilinear expression ST [ĥ1, ĥ2], which is being ap-

plied to various complex symmetric tensors, ĥ1 ab, ĥ2 ab.
By construction, all of these contain the reconstruction
operator S† [see Eq. (44)], and hence are automatically

in IRG, meaning laĥi ab = 0 = gabĥi ab, i = 1, 2. Using

20 In the scaled coordinates x̄µ = (t̄, x̄, φ̄, θ̄) [see Eqs. (28)] covering
nNHEK, this volume element is given by Eq. (151).
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this simplification, the fact that, in nNHEK, the NP co-
efficients ρ, ρ′, κ, κ′, σ, σ′ all vanish, and a Mathematica
notebook for Tab due to [82, 83] automating GHP calculus
and the form of Tab, we find the, still complicated, yet
considerably simplified expression compared to the full
expression in Kerr. Since it is lengthy we have moved it
into App. E.

To compute, using the formulas in App. E, the over-

lap coefficients (91) in the near zone we require the

cases ĥi ab = S†
abφi or ĥ∗

i ab = (S†
abφi)

∗, where i = 1, 2,

φi ⊜ {−4, 0} solves O†φi = 0. The φi’s will be taken
to be equal to a suitable near zone QNM φ = −2Υnear

q

momentarily. This brings about a number of further sim-
plifications, resulting in

8πST [(S†φ1)∗,S†φ2] = − Þ
2
ψ1(2τ + ð)ðφ2 − 6τ Þψ1ðÞφ2

+ 2ðÞψ1(τ + ð)Þφ2 + (Þ
2
φ2)(6τ − ð)ðψ1 + (1 ↔ 2)

(132)

as well as

8πST [(S†φ1)∗, (S†φ2)∗] = − Þ
2
ψ1(2τ̄ + ð

′
)ð

′
φ∗

2 − Þψ1(6τ̄ + 4ð
′
)ð

′
Þφ∗

2

+ 4ð
′
Þ

2
φ∗

2(2ð
′ − τ̄)ψ1 − 6ψ1ð

′2 Þ
2
φ∗

2 + Þ
2
φ∗

2(6τ̄ − ð
′
)ð

′
ψ1

+ 2ð
′
Þψ1(τ̄ + ð

′
)Þφ∗

2 +
3

2
ð

′
Þ

3
φ∗

1ð
′
Þ

3
φ∗

2 + Þ
3
φ∗

1(τ̄ − ð
′
)ð

′
Þ

3
φ∗

2 + (1 ↔ 2).

(133)

In both expressions, we used the shorthand ψ := 1
4 Þ

4
φ∗.

This arrangement of terms is convenient not only be-
cause it reduces the total number of derivatives appear-
ing explicitly to at most four, but also allows us to use

ψ = +2Υnear
q in case that φ = −2Υnear

−q∗ in view of the TS
identity, Eq. (57).

Using these simplifications, the near zone approxima-
tions of the overlap coefficients (91) become

Unear
123 (t̄) = − δm1,m2+m3

A2A3

∫

C (t̄,ε)

T̄ adS̄a×

(−2Υ−q1
)
[

− Þ
2
(+2Υq2

)(2τ̄ + ð
′
)ð

′
(−2Υ∗

−q∗
3
) − Þ(+2Υq2

)(6τ̄ + 4ð
′
)ð

′
Þ(−2Υ∗

−q∗
3
)

+ 4ð
′
Þ

2
(−2Υ∗

−q∗
3
)(2ð

′ − τ̄ )(+2Υq2
) − 6 +2Υq2

ð
′2 Þ

2
(−2Υ∗

−q∗
3
)

+ Þ
2
(−2Υ∗

−q∗
3
)(6τ̄ − ð

′
)ð

′
(+2Υq2

) + 2ð
′
Þ(+2Υq2

)(τ̄ + ð
′
)Þ(−2Υ∗

−q∗
3
)

+
3

2
ð

′
Þ

3
(−2Υ∗

−q∗
3
)ð

′
Þ

3
(−2Υ∗

−q∗
2
) + Þ

3
(−2Υ∗

−q∗
2
)(τ̄ − ð

′
)ð

′
Þ

3
(−2Υ∗

−q∗
3
) + (2 ↔ 3)

]

,

V near
123 (t̄) = − δm1,m2−m3

A∗
2A3

∫

C (t̄,ε)

T̄ adS̄a×

(−2Υ−q1
)
[

− Þ
2
(+2Υq2

)(2τ + ð)ð(−2Υ−q∗
3
) − 6τ Þ(+2Υq2

)ðÞ(−2Υ−q∗
3
)

+ 2ðÞ(+2Υq2
)(τ + ð)Þ(−2Υ−q∗

3
) + Þ

2
(−2Υ−q∗

3
)(6τ − ð)ð(+2Υq2

)
]

,

(134)

where the near zone constant t̄ slice is

C (t̄, ε) = {x̄µ : x̄0 = t̄, 0 ≤ x̄1 ≤ c/
√

4ε}. (135)

To lighten the notation, we have suppressed the super-

script ‘near’ as in 2Aq ≡ 2A
near
q for the scalar prod-

ucts, and we also use the previously introduced nota-
tion, meaning e.g., that −2Υ−q∗

2
≡ −2Υnear

N2ℓ2−m2
and

−2Υ−q1
≡ ζ4J 2Υnear

N1ℓ1m1
.
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In order to compute the overlap coefficients we now
need to substitute the values of τ, τ ′ in nNHEK (see App.
A), the QNMs ±2Υq, q = (N, ℓ,m) in their near zone ap-
proximations (see Sec. V), and the action of the GHP

operators Þ,Þ
′
,ð,ð

′
(see Apps. G, F) on these quanti-

ties.
The actions of Þ,Þ

′
on the radial parts of the QNMs

simplify in nNHEK compared to Kerr, since, as we will
show in App. F, these operators act as ladder operators .
Another non-trivial, and welcome, simplification is that
in the above expressions, the x̄ and the θ̄ integrals can
be seen to factorize. Since the radial QNM functions
defined in Sec. V D are polynomials in x̄ times some
complex power of x̄ [see Eq.(120)], there is no difficulty,
in principle, to carry out the x̄ integral, though we must
of course consider its precise definition which involves a
regulator.

Unfortunately analogous simplifications do not occur

for the actions of ð and ð
′

on the angular parts of the
QNMs: these operators do not act as ladder operators
in nNHEK nor in Kerr. A related difficulty is that the
angular QNM functions are spin-weighted spheroidal har-
monics whose eigenvalues are not known in closed form,
even in the nNHEK limit. It is therefore not clear a
priori how to explicitly evaluate the θ̄ integrals which
involve triple products of spin-weighted spheroidal har-
monics (and other trigonometric functions).

One approach to this problem would be to use nu-
merical methods to evaluate the angular integrals to the
extent needed. Another approach, both in Kerr and in
nNHEK, and valid in the regime m2 . ℓ, is to use the
well-known fact that the spin-weighted spheroidal har-
monics may be expanded in a rapidly converging series
of spin-weighted spherical harmonics [84], see Eqs. (141),
(142) for the first non-trivial terms in such expansions.

Furthermore, as we recall in App. G, when acting on
spin-weighted spherical harmonics21, the operators ð and

ð
′

are related to ladder operators. Using these algebraic
relations, the angular θ̄ integrals of triple products of
spin-weighted spherical harmonics may be computed.

In the next section, we will consider a limit when m2 ≪
ℓ for independent reasons. This will make the explicit
computation of the overlap coefficients possible.

B. Large angular momentum ℓ ≫ 1

Consider again the dynamical system (131) for the
QNM mode amplitudes in the near extremal regime
ε ≪ 1. It is clear that the overlap coefficients Unear

123 and
V near

123 (134) for three modes q1, q2, q3 [recall the QNM la-
bels q = (ℓ,m,N)] in our dynamical system (131) have

21 This is also true to some extent also on their perturbations in
m2/ℓ [85].

the time dependence

Unear
123 (t̄) =ei(ω̄1−ω̄2−ω̄3)t̄(. . . ), (136a)

V near
123 (t̄) =ei(ω̄1−ω̄2−ω̄3)t̄(. . . ). (136b)

We expect that, when

| Re(ω̄1 − ω̄2 − ω̄3)| ≫ 1, (137)

oscillations will tend to cancel over a (slow-) time scale t̄
of order unity, or equivalently, over a BL time scale t of
orderM/ε. It is thus natural to look for QNM frequencies
such that

| Re(ω̄1 − ω̄2 − ω̄3)| . 1. (138)

However, unless

Im(ω̄1 − ω̄2 − ω̄3) . 1, (139)

the coupling coefficients (136) in the dynamical system
(131) will become large on a (slow-) times scale t̄ of order
unity. This would invalidate our small amplitude approx-
imation underlying the derivation of (131).

It is not easy to identify a regime where both conditions
(138) and (139) are satisfied. This is because the [scaled,
see Eq. (95)] QNM frequencies ω̄Nℓm are in general very
complicated functions of m, ℓ even in nNHEK, given that
h+ [see Eq. (109)] in ω̄Nℓm [see Eq. (118)] depends
on the angular eigenvalue for the spheroidal differential
equation, Eℓm. However, matters simplify in a regime of
large angular momenta, ℓi ≫ 1.

The regime where ℓ ≫ 1 supports the “eikonal approxi-
mation” for QNMs, even without a smallness assumption
about the extremality parameter, ε. In fact, the eikonal
approximation was first considered for Schwarzschild
black holes [86], and later by [87] in Kerr for arbitrary
spin. In [87], the large ℓ asymptotics of the QNM fre-
quencies was associated with trapped null geodesics, cor-
responding to unstable critical points of the effective po-
tential in the radial Teukolsky equation. The observa-
tions by [87] were analyzed by [9] in the extremal limit. In
that limit, one observes a qualitative difference depend-
ing on when h+ (109) is real or imaginary i.e., whether
one is in the first or second case of Eq. (118). The real
case occurs for m/(ℓ + 1/2) < 0.74..., and the complex
case for m/(ℓ+ 1/2) > 0.74... [9].

As later clarified by [10, 11], in the case m/(ℓ+ 1/2) >
0.74..., all modes captured by the eikonal analysis are
zero-damped modes, i.e. have a (scaled) QNM frequency
[see Eq. (95)] given by the second case in Eq. (118).
On the other hand [10, 11], for m/(ℓ + 1/2) < 0.74...,
the eikonal analysis captures not only the zero-damped
QNMs given by the first case in Eq. (118), but also
certain “damped” QNMs, whose frequencies do not pile
up at the superradiant bound, as assumed from the out-
set in our analysis through (95). These damped QNMs
are not captured by our analysis. They correspond to
unstable critical points of the effective potential strictly
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outside the horizon even in the extremal limit, whereas
the zero-damped QNMs correspond to critical points on
the horizon [10, 11].

Due to the complicated dependency of the real part
of ω̄Nℓm on ℓ,m in the case m/(ℓ + 1/2) > 0.74... stem-
ming from the presence of the angular eigenvalue sEℓm,
it seems hard to make general statements. Hence, from
now on, we will consider the case m/(ℓ+ 1/2) < 0.74...,
in which ω̄Nℓm is imaginary, i.e. (138) holds for the zero-

damped QNMs by the first case of Eq. (118). As for the
damped modes, it appears that there are only finitely
many [10, 11] and we exclude them from our analysis22.

It is possible to characterize the angular eigenvalues

sEℓm associated with the angular equation (102), in the
scaling regime ℓ ≫ 1 and, say, even m2/ℓ . 1, such h+

is real and consequently ω̄Nℓm is imaginary. The point
is that, in this regime, the angular equation is a small
perturbation of the equation for spin-weighted spherical
harmonics, sYℓm, which is

[

1

sin θ̄

d

dθ̄

(

sin θ̄
d

dθ̄

)

+

(

sĒℓ − m2 + s2 + 2ms cos θ̄

sin2 θ̄

)]

sYℓm(θ̄) = 0, (140)

where sĒℓ = ℓ(ℓ + 1) in our conventions. Indeed, if
we compare this operator with that (102) for the spin-
weighted spheroidal harmonics, we see that the addi-
tional terms in (102) are given by bounded functions of
θ̄ times constants of order . m2. The spacing between
subsequent eigenvalues sĒℓ = ℓ(ℓ + 1) of the operator
for spin-weighted spherical harmonics is 2ℓ + 2 = O(ℓ).
By standard methods for bounded perturbations of self-
adjoint operators with a pure point spectrum (such as
the resolvent method, see e.g., [81]), one can obtain a
convergent perturbation series both of eigenvalues and
eigenfunctions for a bounded perturbation, as long as the
norm of the perturbing operator is less than the spacing
between the eigenvalues.

The first relevant terms in the expansion of the eigen-
value may e.g., be found setting aω = amΩH = m/2 in
the small aω-expansions [39, 84, 88] [see Eq. (101)],

sEℓm =sĒℓ − m2

8
+

4m4 − 24m2s2 −m2

32ℓ2

+
−4m4 + 24m2s2 +m2

32ℓ3
+ . . .

(141)

where the dots are terms that we will be able to neglect
in our scaling regime (145).23 This expression assumes
m 6= 0; the axisymmetric case m = 0 requires a special
treatment which we give in App. D 1.

Likewise, under the same assumption, the first rele-
vant terms in the series of the angular eigenfunction are
obtained by setting aω = amΩH = m/2 in the small

22 Since the damped modes do not pile up at the superradiant
bound mΩH , one might expect that it would be hard for them
to satisfy a resonance condition.

23 The leading term is already a very good approximation even for
m2 . ℓ, in practice, but in App. H, we also require subleading
terms.

aω-expansion [84]

sSℓm = sYℓm+

ms

2

[

sαℓm

ℓ
sY(ℓ−1)m − sα(ℓ+1)m

ℓ+ 1
sY(ℓ+1)m

]

+ . . . ,
(142)

where the dots are terms that we will be able to neglect
in our scaling regime (145), and where

sαℓm =
1

ℓ

√

(ℓ2 −m2)(ℓ2 − s2)

(2ℓ− 1)(2ℓ+ 1)
. (143)

Again, the axisymmetric case m = 0 requires a special
treatment, see App. D 1.

As a consequence of Eqs. (141), (109), (118), the QNM
frequencies in the near extremal scaling limit conjugate to
the slow time t̄ [see Eq. (95)] have the large ℓ asymptotics

ω̄Nℓm = −i
(

N + ℓ+ 1 − 15m2

16ℓ
+

15m2

32ℓ2

)

+ . . . . (144)

Again, the axisymmetric case m = 0 requires a special
treatment, see App. D 1.

In order to be self-consistent with the simplification
which we made in (101) setting ω := m/(2M) in the
angular equation (102), anticipating that ω = mΩH +
O(ε), we must demand in view of Eqs. (95) and (144)
that εℓ ≪ 1 i.e., in total that

m2 ≪ ℓ ≪ 1

ε
. (145)

In the following, we assume that these conditions hold.
It is clear from Eq. (144) that condition (138) is sat-

isfied but that there is no reason why condition (139)
should be satisfied. Barring any exact “selection rules”
for the angular momenta ℓi and overtone numbers Ni in
the overlap coefficients, which as we shall show do not
occur, we must therefore resort to a regime where the
prefactor ei(ω̄1−ω̄2−ω̄3)t̄ in Eq. (136) is trivially ≈ 1.
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Since we have ω̄ ∼ −i(ℓ + N) for large ℓ, this means
for low Ni that we should only consider times such that
t̄L . 1, where L is the order of the ℓi considered. In view
of t ∼ Mt̄/ε, this means that

tLε/M . 1, (146)

so the BL time t may still be very large24 in units of M
in our regime where m2 ≪ L ≪ ε−1.

To summarize and simplify this discussion, in our scal-
ing regime (145) and assuming t̄ℓ . 1 we can basically25

take

sSℓm → sYℓm, ω̄Nℓm → −i(N + ℓ+ 1), (147)

and we take ei(ω̄1−ω̄2−ω̄3)t̄ ≈ 1. The simplifications for
the overlap coefficients resulting from these substitutions
will be described in detail in the next section.

C. The dynamical system in the regime
m2 ≪ ℓ ≪ 1/ε

Now we consider in more detail the simplifications in
our dynamical system (131) arising from the substitu-
tions (147) in the eikonal regime where one or more
ℓi ≫ m2. These substitutions are made in the overlap
coefficients (134) in Eq. (131), which in their turn, al-
ready incorporate the simplifications due to ε ≪ 1. In
the scaling regime (145), we write

ℓ = Lℓ̄, (148)

where it will be understood that ε−1 ≫ L ≫ m2 and
ℓ̄ ≥ c > 0.

First of all, this means that the near zone QNMs get
replaced by

sΥnear
Nℓm(x̄µ) →
e−(ℓ+N+1)t̄+imφ̄

sYℓm(θ̄) s,0RNℓm(x̄),
(149)

where the functions s,νRNℓm are defined in Eq. (F2),
wherein kN = m− i(ℓ+N+ 1), h+ = ℓ+ 1 in the eikonal
regime. For m = 0 we should instead set, according to
our discussion in App. D 1,

sΥnear
Nℓ0(x̄µ) →
e−(ℓ+N+1)t̄

sYℓ0(θ̄) s,0RNℓ(−iε(ℓ+N+1))(x̄).
(150)

Since we now have spin-weighted spherical harmonics

sYℓm instead of spheroidal harmonics in the near zone

QNMs, the GHP operators ð,ð
′

may be expressed in

24 Below, we will consider the scaling L ∼ 1/
√

ε. Then the
above condition means that we consider intermediate times
t̃ =

√
εt/(2M) . 1.

25 The next-to-leading contributions to these relations are, in fact,
also important for the calculations in App. I.

terms of spin-raising and lowering ladder type operators
and their action on sYℓm, see App. G. Also, we use that

Þ,Þ
′

act as ladder operators on the functions s,νRNℓm,
see App. F. The formulas for the explicit GHP scalars
τ, τ ′ in nNHEK are imported from App. A. Further-
more, we use the near zone approximations (125), (129)
(m 6= 0), (D24), (D23) (m = 0) for the normalization
factors ±2ANℓm and their limits (D11), (D12) (m 6= 0),
(D25) (m = 0) for ℓ ≫ 1. Finally, the surface integration
element in Eqs. (134) is

T̄ adS̄a = 2M3 sin θ̄(1 + cos2 θ̄)dx̄dφ̄dθ̄ (151)

in the nNHEK coordinates (28).
It is a non-trivial fact that, after these substitutions—

and for times such that t̄L . 1—the overlap coefficients
(134) take a term-by-term factorized form, of the follow-
ing schematic form:

Unear
123 = δm1,m2+m3

∑

j

u
(j)
123[123](j){123}(j) (152a)

V near
123 = δm1,m2−m3

∑

j

v
(j)
123[123](j){123}(j) (152b)

When all ℓi are in the eikonal regime, each symbol [123](j)

stands for a particular member (i.e., particular values of
mi, si, ℓi for each j) of the class of angular integrals of
the form

[123] =

π
∫

0

dθ̄ sin θ̄
1 − i cos θ̄

1 + i cos θ̄
Y1Y2Y3 (153)

where Yi = siYℓimi are spin-weighted spherical harmonics
with certain mode and spin indices. Similarly, when e.g.,
only ℓ2, ℓ3 are in the eikonal regime, the angular integrals
to be considered are of the form

[123] =

π
∫

0

dθ̄ sin θ̄ S1Y2Y3, (154)

where S1 is an expression involving a spin-weighted
spheroidal harmonic acted upon by spin-raising and low-
ering operators and GHP scalars, etc.

The symbol {123}(j) stands for (regularized) radial
overlap integrals of the form

{123} =

c/
√

4ε
∫

0

dx̄ f2 R1R2R3 (155)

involving a triple product of the special functions Ri =

si,νiRNiℓimi for certain mode indices and values of the

parameter νi [see Eq. (F1) or (F2)]. u
(j)
123, v

(j)
123 are nu-

merical factors that are determined by writing out the
overlap integrals (134) in full detail. They depend on
si, νi,mi, ℓi, Ni, and their values are summarized in the
tables in App. M in the case that all ℓi are large.
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The leading behavior in the regime ε−1 ≫ L ≫ m2 of
the angular overlap integrals [123] is found by combin-
ing an asymptotic formula for the spin-weighted spher-
ical harmonics with the method of stationary phase, as
we show in App. H. In fact, the final result for [123],
is found by combining Eqs. (154), (H4), (H5), (H14).
These formulas simplify using the selection rules on the
mi’s in Eq. (152).

Next, the (regulated) radial overlap integrals 26 {123}
(155) in Eq. (152) are carried out by the same method,
detailed in App. D, that we used to find the scalar prod-
ucts of QNMs, using ε−1 ≫ L ≫ m2 to further approx-
imate the results. These computations are described in
App. I.

We now combine all these formulas, and renormalize
the QNM amplitudes in order to shorten the expressions
for ℓ ≥ cL, c > 0 as follows.

cNℓm →
(

√
N !L4− N

2
πiℓ+12

ℓ
2

−imℓ̄7− N
2

sinh(πm)

)−1

cNℓ̄m

(156a)

cNℓ0 → −
(

√
N !L3− N

2
iℓ2

ℓ
2 ℓ̄6− N

2

ε

)−1

cNℓ̄0 (156b)

When ℓ ≪ L, we renormalize the amplitudes as follows:

cNℓm → L2
2hNℓm+

2 (+2ANℓm)−1 cNℓm, (157a)

cNℓ0 → L(−1)ℓ+12
ℓ+1

2 (+2ANℓ0)
−1
cNℓ0, (157b)

see Eqs. (129), (D24) for the definition of 2ANℓm, 2ANℓ0,
respectively. Finally, we renormalize the amplitude pa-
rameter α as

α → 2
15
2 M− 2

3α. (158)

By an abuse of notation, we denote the new coupling
coefficients arising from Unear

123 , V near
123 after these renor-

malizations by the same symbols.

When all modes have a large ℓ e.g.,
ℓ̄i ≥ c > 0 for all i = 1, 2, 3, and when all Ni = 0,
we find

Unear
123 =

δm1,m2+m3
q1

4ℓ̄
1
2

S ℓ̄
5
2

1

[

Θ(ℓ̄1 − |ℓ̄2 − ℓ̄3|) − Θ(ℓ̄1 − |ℓ̄2 + ℓ̄3|)
]

[

−6ℓ̄2
2ℓ̄

2
3 csc2

(χ1

2

)

+ (ℓ̄2 + ℓ̄3)4
]

tan
(χ1

2

)

×
[

odd(ℓS) cos(χ2 − χ3) cos(m3χ2 −m2χ3) − ev(ℓS) tanh(πm1) sin(χ2 − χ3) sin(m3χ2 −m2χ3)
]

,

V near
123 =

δm1,m2−m3
q1(−1)ℓ3+m3 ℓ̄4

2

ℓ̄
1
2

S ℓ̄
5
2

1

[

Θ(ℓ̄1 − |ℓ̄2 − ℓ̄3|) − Θ(ℓ̄1 − |ℓ̄2 + ℓ̄3|)
]

cot
(χ1

2

)

×
[

odd(ℓS) cos(3χ3 + χ2) cos(m3χ2 +m2χ3) − ev(ℓS) tanh(πm1) sin(3χ3 + χ2) sin(m3χ2 +m2χ3)
]

.

(159)

Here, the step functions Θ impose the condition that the
ℓi form the sides of a triangle, i.e., that

|ℓ̄2 − ℓ̄3| ≤ ℓ̄1 ≤ ℓ̄2 + ℓ̄3, (160)

with angles χi opposite to the sides ℓ̄i. To take into
account a qualitative difference for axisymmetric modes,
we defined

qj =

{

2
ℓ̄j

ℓ̄S
if m1 = 0,

1 if m1 6= 0.
(161)

The formula for the angles χi is given by the cosine the-
orem e.g.,

χ1 = arccos

[

ℓ̄2
2 + ℓ̄2

3 − ℓ̄2
1

2ℓ̄2ℓ̄3

]

(162)

26 They are related to Wigner 3j-symbols of certain SL2(R) repre-
sentations [89, 90]; see also App. L.

and its cyclic permutations of (123), see Fig. 1. We use
the notation ℓS = ℓ1 + ℓ2 + ℓ3 and ℓi/L = ℓ̄i.

χ1
χ2

χ3
ℓ̄1

ℓ̄3

ℓ̄2

FIG. 1

The functions ev respectively odd in Eqs. (159) are one
if and only if the argument is an even respectively odd
number, and zero otherwise. In our expressions (159) for
the overlap coefficients, and in the following, we are dis-
carding consistently terms suppressed by higher inverse
powers of L, in this case order O(L−1/2).
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When only ℓ1, ℓ2 are large e.g., ℓ̄i ≥ c > 0 for i = 1, 2,
but ℓ3 is not large, we find the overlap coefficients to
leading order in L by again heavily using the results of
Apps. I, H, M. The results are quite lengthy and pre-
sented in App. K.

When only ℓ2, ℓ3 are large e.g., ℓ̄i ≥ c > 0 for all i = 2, 3,
but ℓ1 need not be large, a similar analysis can be made
and the results are presented in App. K.

A notable nontrivial feature of all overlap coefficients is
that they do not depend explicitly on the large parameter
L. The overlap coefficients for the higher overtone num-
bers (NS > 0) are discussed in App. J in the case when
all ℓi’s are large. It is remarkable that we generally find
them to be of the same order in L and in fact equal to the
NS = 0 overlap coefficients times certain (Ni, ℓ̄i,mi, si)-
dependent dressing factors. We believe that this is also
true in the other cases where some of the ℓi’s are not
large but we do not present these results here.

VII. EQUILIBRIUM DISTRIBUTION OF
INTERACTING QNMS

A. Truncated dynamical system

In this section, we carry our analysis of the dynamical
system (131) further by analyzing possible “equilibrium”
solutions, by which we mean ones with

d

dt̄
ceq

q = 0 (163)

for all QNM labels q = (N, ℓ,m). By (131) this is equiv-
alent to finding ceq such that

∑

2,3

(

Unear
123 ceq

2 c
eq
3 + V near

123 ceq
2 c

eq∗
3

)

= 0 (164)

for all q1, where we recall the condensed notation c1 = cq1

etc.27

Since our dynamical system is just an approximation,
in that, we restrict our attention to the near zone, to only
QNM contributions to the field, and to at most quadrat-
ically non-linear effects, the equilibrium condition only
means, in effect, that the cq’s are time-independent to
within these approximations. Even so, it is quite dif-
ficult to solve the system (164) directly. We therefore
introduce further simplifications which allow us to find a
solution.

To this end, the first simplification that we now intro-
duce is to consider infinitely many QNMs having corre-

sponding amplitudes chigh
Nℓm with a high ℓ & L for some

large L (in practice e.g., L = 102 −103) and a few QNMs

27 An equilibrium solution is similar to a QNM associated with
the linearized EE in that its amplitude is constant in time, i.e.
quadratically non-linear effects precisely cancel each other out.

and their corresponding amplitudes clow
Nℓm. The trunca-

tion is that we simply neglect all midsize ℓ’s in between.
We think of the few low ℓ QNMs as being the driver of the
high ℓ QNMs giving rise to the aforementioned pumping
effect.

Under this simplification, we may use the exact formu-
las for the scaling limits of the overlap coefficients dis-
cussed in Sec. VI C and App. K. Omitting at this stage
any channel such as (high,low) → (low) and (low,low)
→ (low), which is suppressed by an inverse power of L
according to these formulas, the dynamical system (131)
takes the following schematic form:

d

dt̄
chigh = (. . . )chighchigh + (. . . )chighclow (165a)

d

dt̄
clow = L

1
2 [(. . . )chighchigh + (. . . )chighclow]. (165b)

In these equations, (. . . ) represents overlap coefficients,
as presented in Sec. VI C and App. K, and a summa-
tion/integration over the QNM mode numbers under-
stood. We shall give a more explicit version of this system
in the next section.

B. Equilibrium distributions

Unfortunately, even the truncated system (165) is still
quite intractable due to the complicated forms of the
overlap coefficients as indicated by . . . in Eq. (165).
With the goal of identifying an equilibrium distribution,
we now make further simplifications to Eqs. (165). We
restrict to:

• axisymmetric QNMs (m = 0),

• zero overtone number N = 0,

• only odd ℓ’s.

The first and last simplifications are self-consistent:
The first one because of the Kronecker delta functions
of the m’s in the overlap coefficients as described in
Sec. VI C, App. K, and the last one because, by inspec-
tion, the formulas in Sec. VI C, App. K imply that two
odd ℓ QNMs may never excite an even ℓ QNM. Actually,
the last simplification could be avoided at the expense
of treating the even ℓ QNMs in the high ℓ sector inde-
pendently, which we avoid for simplicity. The N = 0
restriction on the overtone number is not self-consistent
(a pair of N = 0 QNMs can excite an N > 0 QNM),
but is made to arrive at a manageable truncated dynam-
ical system. Nevertheless, the results that we present for
the N ≥ 0 modes in App. J indicate that the general
structure relevant for our subsequent arguments below is
preserved also in this case, so the second restriction is
likely not an essential one.

To write down the dynamical system under the above
three simplifying assumptions, we combine all the QNM
amplitudes in the low ℓ sector, and we view the QNM
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amplitudes in the high ℓ sector as smooth functions in the rescaled angular momentum ℓ̄ = ℓ/L, which leads to
the definitions

C low :=
√
π
∑

2≤ℓ≪L

iℓ
√

(2ℓ+ 1)(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)clow
0ℓ0 (166a)

chigh

ℓ̄
:= chigh

0ℓ0 . (166b)

We now consider the scaling L ∼ 1/ε1/2, cL ≤ ℓ ≤ 1/εq

for some 1/2 < q < 1, so that 1 ≪ L, ℓε ≪ 1, as is re-
quired for our approximations in the high ℓ sector. Since
our approximations require that ℓt̄ . 1, our dynamical
system is valid for slow times or order28 t̄ . εq, or BL
times t .Mεq−1.

We convert the summations over the high ℓ’s to in-
tegrals with respect to the rescaled angular momentum

ℓ̄ = ℓ/L as in
∑

ℓ → L
∫ ε1/2−q

c
dℓ̄. Furthermore, we use

the substantial simplifications due to mi = 0 described
in App. K.

After the dust settles, the dynamical system simplifies
to, within our approximations and truncations (taking
α = 1, which is an assumption about the overall ampli-
tude)

d

dt̄
C low = 0

d

dt̄
chigh

1 = ℓ̄1c
high
1 Re(C low) + ℓ̄

− 3
2

1

ε1/2−q
∫

c

ε1/2−q
∫

c

dℓ̄2dℓ̄3

[

Θ(ℓ̄1 − |ℓ̄2 − ℓ̄3|) − Θ(ℓ̄1 − |ℓ̄2 + ℓ̄3|)
] tan

(

χ1

2

)

(ℓ̄1 + ℓ̄2 + ℓ̄3)
3
2

×

×
{

1

2

[

−6ℓ̄2
2ℓ̄

2
3 csc2

(χ1

2

)

+ (ℓ̄2 + ℓ̄3)4
]

cos(χ2 − χ3)chigh
2 chigh

3 − 2ℓ̄4
2 cos(3χ3 + χ2)chigh

2 (chigh
3 )∗

}

.

(167)

The homogeneous scaling behavior of the above integral
kernel under rescalings of the ℓ̄i (noting that χi are the
scale invariant angles of a triangle with side lengths ℓ̄i)
now suggests that we make the ansatz

chigh,eq

ℓ̄
∝ ℓ̄p (168)

for some p to be determined. If the integration bound-
aries of the double integral (167) were (0,∞) instead of
(c, ε1/2−q), the two terms on the right side of the sec-
ond equation in (167) would cancel for a suitable propor-
tionality factor of the order of C low,eq, the total QNM
amplitude of the low ℓ QNMs, and for p = −2. For
these choices, the double integral is actually divergent
for both large and small ℓ̄2,3, but we may regulate these
divergences e.g., by a dimensional renormalization pre-
scription. Such a prescription can be understood as an
implicit assumption on the nature of the intermediate
QNMs having ℓ . ε−1/2 and QNMs with very large

28 It would thus be sensible to write our dynamical system (167) in
terms of a medium time t̃ = ǫ−q t̄ of order t̃ . 1, and correspond-
ingly rescale the QNM amplitudes as cℓ → εqcℓ to maintain the
form of (167).

ℓ & ε−q, for which the approximations used to arrive
at (167) do not necessarily hold.

Thus, our equilibrium distribution for the high ℓ QNM
amplitudes is

chigh,eq

ℓ̄
∼ C low,eq · ℓ̄−2. (169)

By Eq. (86), the Hertz potential φeq in equilibrium is
given by a sum of the corresponding QNMs weighted
with these amplitudes. Taking into account our renor-
malizations (156) and the definition (D25), this trans-
lates into29:

φeq(x̄µ) ∝
(low) + C low,eq

∑

ε−q&ℓ&ε−1/2

2− ℓ
2 ℓ− 7

2 · −2Υnear
0ℓ0 (t̄, x̄, θ̄),

(170)

in the near horizon zone where −2Υnear
0ℓ0 (x̄µ) are the near

zone, zero-damped QNMs as in Eq. (150). “Low” stands
for the contribution of the low ℓ QNMs. Since they are

29 The proportionality factor includes an L−1 =
√

ε.
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matched to the far zone modes (see Sec. V C), we also
have

φeq(xµ) ∝
(low) + C low,eq

∑

ε−q&ℓ&ε−1/2

2− ℓ
2 ℓ− 7

2 · −2Υfar
0ℓ0(t, x, θ),

(171)

with xµ = (t, x, θ, φ) the far zone coordinates, related
to BL coordinates (t, r, θ, φ) by x = (r − r+)/r+, and
with far zone, zero-damped QNMs −2Υfar

0ℓ0(t, x, θ) ∝
−2Yℓ0(θ)−2R

far
0ℓ0(x)e−iω0ℓ0t given in terms of the corre-

sponding radial solutions (115). These modes decay as
e−ε(ℓ+1)t/(2M) in BL time. Since, in the range of modes
considered, we have ℓ . ε−q and 1/2 < q < 1, ε ≪ 1,
these decaying exponentials are in fact practically = 1 for
a parametrically long BL time of order t/M = O(εq−1).

Finally, the full metric is given by Eq. (77), which in
equilibrium is

geq
ab = gkerr

ab + hIRG,eq
ab + xeq

ab, (172)

where hIRG,eq
ab is the reconstructed metric (78) corre-

sponding to the equilibrium Hertz potential φeq, and
where xeq

ab the corresponding corrector, see Eq. (94).
The upshot is that, by Eqs. (170), or (171), the equi-

librium metric has dyadically small amplitudes for large
ℓ QNMs, and thus the equilibrium metric, which is con-
stant in time over a parametrically large BL time of order
t, has no large ℓ-pieces. Assuming the equilibrium metric
to be the endpoint of a dynamical evolution governed by
our dynamical system in the weakly non-linear regime,
it follows that high ℓ contributions must eventually die
out, resembling an inverse cascade. This dying out is
attributable solely to the weakly non-linear effects, as
decaying exponentials in the linear QNMs are practically
order one over the time scales that we consider, which
are parametrically large (scaling as an inverse power of
the extremality parameter) in BL time.

VIII. DISCUSSION

In this paper we have derived a non-linear dynamical
system for the zero-damped QNM amplitudes of a near
extremal Kerr black hole. Our derivation is based on the
leading non-linear approximation of the EEs and the as-
sumptions that (a) for a small extremality parameters ε
there exists a parametrically long epoch t = O(1/

√
ε) in

which these QNMs are the dominant contributions to the
non-linear metric perturbation, (b) the angular momen-
tum of the QNMs can be considered either as “small”
ℓ = O(1) or large ℓ = O(1/

√
ε), and that intermedi-

ate and very large angular momentum QNMs can be ne-
glected in an approximate description of the dynamical
system, and (c) the non-linear interaction between these
QNMs takes place predominantly in the near (nNHEK)
zone.

Under these assumptions, we then derived an approxi-
mate equilibrium solution to the dynamical system which
is time independent for a parametrically long BL time.
During this time, the exponentially decaying factor in
the QNM functions is practically unity, so the form of
the equilibrium solution is dictated entirely by non-linear
effects. Our equilibrium solution has QNM amplitudes
that are zero for non-axisymmetric (m 6= 0) modes and
that are dyadically exponentially small in ℓ. Although
we have not shown that our equilibrium solution is an
attractor of the dynamical system, we view this as evi-
dence that high angular momentum (m, ℓ) QNM contri-
butions become exponentially suppressed, hence of a kind
of inverse cascade. It is, of course, possible that the ques-
tion of inverse versus direct cascade might be impacted
by the restriction to m = 0 in deriving the equilibrium
solutions. This restriction effectively reduces the dimen-
sionality of the system, which is known to affect cascade
directions [47, 48].

Since the dynamical system has been explicitly com-
puted, it would in principle be possible to perform a nu-
merical simulation of a sufficiently large but finite subsys-
tem of QNMs to check whether the attractor and cascade
hypothesis are true.

It might also be fruitful to introduce a statistical el-
ement into our description, following a standard proce-
dure in the theory of weak wave turbulence, see [43] for
a review. In such a description the phases of the QNM
amplitudes governed by our dynamical system would be
considered as random, and one would first derive a cor-
responding system for the absolute values of the ampli-
tudes, as done in [43]. Our dynamical system does not
appear to be Hamiltonian unlike the systems studied in
[43], but we do not think that this would be an essential
obstacle. Finally, it would be worth exploring possible
connections to “non-modal stability” in systems where
the linear modes all decay (as is the case for QNMs) but
due to their “non-normality” sum to cause a non-linear
transition to turbulence, see e.g., [91].
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Appendix A: Spin coefficients in nNHEK

The complete list of optical scalars, spin coefficients,
and Weyl components associated with the Kinnersley
frame and BL coordinates in Kerr can be found e.g., in
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[65]. In the body of the text, we mainly require those of
the nNHEK geometry associated with the frame (34) and
the coordinates x̄µ = (t̄, x̄, θ̄, φ̄) of Eq. (28). These spin
coefficients and the non-vanishing optical scalars are, in
GHP notations [55]

τ =
−i sin θ̄

M
√

2
(

1 + cos2 θ̄
) , (A1a)

τ ′ = − i sin θ̄

M
√

2(1 − i cos θ̄)2
, (A1b)

β =
cot θ̄

2
√

2M(1 + i cos θ̄)
, (A1c)

β′ = −2i sin θ̄ − (1 − i cos θ̄) cot θ̄

2
√

2M(1 − i cos θ̄)2
, (A1d)

ǫ = 0, (A1e)

ǫ′ = − x̄+ 1

2M2
(

1 + cos2 θ̄
) . (A1f)

The only non-vanishing Weyl component is

Ψ2 = − 1

M2(1 − i cos θ̄)3
. (A2)

Appendix B: GHP relations in nNHEK

In the nNHEK geometry, we have ρ = ρ′ = κ = κ′ =
σ = σ′ = 0 and Ψi = 0, i 6= 2, i.e., the metric is type D
and the principal null geodesics are non-shearing, non-
expanding, and non-twisting. As a consequence, we have
the following GHP invariant identities involving the non-
vanishing optical scalars τ, τ ′, and non-vanishing Weyl
component Ψ2,

ðτ = τ2, Þ τ = 0, Þ τ ′ = 0, ð
′
τ = Ψ2 + τ τ̄ , (B1)

together with their primed, complex conjugated and
primed-complex conjugated versions. The GHP commu-
tators read

[Þ,Þ
′
] = (τ̄ − τ ′)ð + (τ − τ̄ ′)ð

′ − p(Ψ2 − ττ ′)

− q(Ψ̄2 − τ̄ τ̄ ′),

[ð,ð
′
] = −pΨ2 − qΨ̄2,

[Þ,ð] = −τ̄ ′Þ

(B2)

when acting on a GHP scalar of weights ⊜ {p, q}. The
full set of GHP commutators is obtained by taking the
GHP prime and complex conjugate of these relations.

Appendix C: Discrete isometries and GHP
intertwining relations

Besides the continuous rotation and time-translation
isometries, the Kerr metric has a group (Z2)2 of isome-
tries generated by I, J , where

J : (t, φ) → (−t,−φ), I : θ → π − θ, (C1)

referring to BL coordinates. These isometries act on or-
dinary scalar or tensor fields by the usual tensor trans-
formation rules (pull-back). However, defining their ac-
tion on GHP scalars with non-trivial weights is somewhat
more subtle. For the case of J , this was given in [41], as
we now briefly recall.

Being an isometry, J maps any NP frame aligned with
the principal null directions to another such frame. In
fact, it swaps the null directions la and na and changes
the orientation on the orthogonal complement of these
null directions spanned by ma, m̄a, i.e., there is ΛJ > 0,
ΓJ ∈ R (depending on the chosen NP frame) such that
J∗la = −ΛJn

a, J∗na = −Λ−1
J la, J∗ma = eiΓJ m̄a. Here

we have defined J to act on tensors by the push-forward,
and we combine λ2

J := ΛJe
iΓJ Following [41], we define

the C-linear action of J on η ⊜ {p, q} by

J η(x) := ip+qλJ (x)−pλ̄J (x)−qη(J(x)) (C2)

in the given NP frame. It follows [41] that J η ⊜
{−p,−q} is an invariantly defined properly weighted
GHP scalar. In the Kinnersley frame (32) and BL co-
ordinates, we have e.g. [41],

λJ =

√
2(r − ia cos θ)√

∆
. (C3)

In nNHEK in the frame (34) and the coordinates (28),
we have

λJ = M
√

2

(

1 − i cos θ̄√
f

)

(C4)

instead, where f = x̄(x̄+ 2).
For the case of I one may give an analogous construc-

tion. In this case, we have I∗la = ΛI l
a, I∗na = Λ−1

I la,
I∗ma = eiΓI m̄a, where differently from the case of J , the
principal null directions are not exchanged, and where
ΛI > 0, ΓI ∈ R. As before, we combine λ2

I := ΛIe
iΓI ,

and then we define the C-linear action of I on η ⊜ {p, q}
by

Iη(x) := λI(x)q λ̄I(x)pη(I(x)) (C5)

in the given NP frame. It again follows that Iη is an in-
variantly defined properly weighted GHP scalar, but dif-
ferently from J , the weights are now Iη ⊜ {q, p}. Both
in the Kinnersley frame in Kerr, and in the frame (34) in
nNHEK, we have e.g.,

λI = i. (C6)

The Teukosky operators sO, s ≥ 0 and their adjoints
have useful intertwining relations with I,J . For the case
of J , this intertwining relation is [41]

sOΨ
2s
3

2 J = Ψ
2s
3

2 J sO† (C7)

where Ψ2 is the non-vanishing background Weyl scalar
of Kerr. For the case of I, this intertwining relation is

sO†Ψ
− 2s

3

2 I = Ψ
− 2s

3

2 IsO′∗. (C8)
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The last formula may be checked using Eq. (38) and the
actions Iρ = ρ̄, Iτ = τ̄ , Ima = m̄a, Ina = na, Ila = la,
the formula for the adjoint,

sO†η =
[

gab(Θa − 2sBa)(Θb − 2sBb) − 4s2Ψ2

]

η, (C9)

for η ⊜ {−2s, 0}, and the formula [41]

ΘaΨ2 = −3(Ba +B′
a)Ψ2, (C10)

which yields Ψ
2s
3

2 sO†Ψ
− 2s

3

2 = sO′ and which is in agree-
ment with (C7) after applying J both sides. The inter-
twining relations for sO, s ≤ 0 follow by applying a GHP
priming operation.

Another well-known set of intertwining relations is
closely related to the Teukolsky-Starobinsky (TS) iden-
tities [66, 67] (see e.g., [35, App. K] for their GHP co-
variant forms used here), as we now recall. Let W be the
linear differential operator that produces the perturbed
Weyl scalar +2ψ from a metric perturbation. In GHP
notation,

Wabhab =
1

2
(ð − τ̄ ′)(ð − τ̄ ′)hll +

1

2
(Þ−ρ̄)(Þ−ρ̄)hmm

− 1

2

[

(Þ −ρ̄)(ð − 2τ̄ ′) + (ð − τ̄ ′)(Þ−2ρ̄)
]

h(lm) (C11a)

W†
abη =

1

2
lalb(ð − τ)(ð − τ)η +

1

2
mamb(Þ−ρ)(Þ−ρ)η

− 1

2
l(amb)

[

(ð + τ̄ ′ − τ)(Þ −ρ) + (Þ−ρ+ ρ̄)(ð − τ)
]

η,

(C11b)

where the second line gives the formal adjoint acting on
η ⊜ {−4, 0}.

Then the essence of the Teukolsky formalism may be
succinctly summarized in the operator equation SE =
OW [92]. The “radial” TS identities can be stated co-
variantly as

SW†∗ = − 1

2

[

Þ
2 −4(ρ+ ρ̄)Þ+12ρρ̄

]

Þ
2

(C12a)

WS†∗ =
1

4
Þ

4
. (C12b)

Acting with O from the left, then using SE = OW , E =
E∗ = E†, and ES†∗ = W†∗O†∗ gives

O Þ
4

= −2
[

Þ
2 −4(ρ+ ρ̄)Þ+12ρρ̄

]

Þ
2 O†∗. (C13)

Appendix D: Normalization of QNMs

In this section, we provide some details on the com-
putation of the normalization constants ±2ANℓm, see
Eq. (60), in the near extremal approximation ε ≪ 1.
Some peculiarities arise in the case of axisymmetric
modes, m = 0. That case is therefore treated separately
in App. D 1.

For Υi ⊜ {−4, 0} , i = 1, 2, the definition of the scalar
product (48) is explicitly

〈〈Υ1,Υ2〉〉t =

∫

C

dSa
[(

Ψ
4
3

2 J Υ1

)

(Θa − 4Ba) Υ2

−Υ2 (Θa + 4Ba)
(

Ψ
4
3

2 J Υ1

)]

,

(D1)

where C is any surface of constant t in Kerr. The inte-
gration element on C , dSa = uadS, is defined in terms
of the unit forward normal ua to C and the intrinsic in-
tegration element, dS.

In case Υ1,Υ2 ⊜ {−4, 0} are two QNMs, a complex
r-integration contour as described in [41] is understood
in order to regulate the divergence of the integral as
r∗ → ±∞. This integral is then split into a near-zone-
and a far-zone part, as in Sec. V. Consequently, in the
near-zone approximation, C is a constant t̄ slice with ap-
propriately defined analytic extension in x̄, and we have

dS = 2M3 sin θ̄

√

1 + cos2 θ̄

f
dx̄ dθ̄ dφ̄, (D2)

and

ua =
1

2

( √
f

M
√

cos2 θ̄ + 1
la +

2M
√

cos2 θ̄ + 1√
f

na

)

(D3)

which is valid in our frame (34). We also have uaBa = 0
since ρ = 0 in nNHEK, and thereby

Ψ
4
3

2 J Υ1 =
4M

4
3

f2
Υ1

∣

∣

∣

∣

∣ t̄→−t̄
φ̄→−φ̄

uaΘaΥ2 =

[

f ′ (2 − ∂φ̄

)

+ 2∂t̄

]

2M
√
f
√

1 + cos2 θ̄
Υ2

uaΘa

(

Ψ
4
3

2 J Υ1

)

=

[

f ′ (2 + ∂φ̄

)

− 2∂t̄

]

2M
√

f5
√

1 + cos2 θ̄
Υ1

∣

∣

∣

∣

∣ t̄→−t̄
φ̄→−φ̄

.

(D4)

Using these formulas, the near zone contribution to
the scalar product between two QNMs [see Eq. (103a)]

−2ΥN1ℓ1m1
,−2ΥN2ℓ2m2

is found to be

〈〈−2ΥN1ℓ1m1
,−2ΥN2ℓ2m2

〉〉near =

δℓ1ℓ2
δm1m2

c/
√

4ε
∫

0

dx̄
4
√

2M
10
3

f3 −2RN1ℓ1m1 −2RN2ℓ1m1
×

[f ′(2 − im1) − i(k1 + k2 − 2m1)] .
(D5)

In this formula, as in the text, we set the point delimiting
the near from the far-zone to be x̄ = c√

ε
. Furthermore,

we have dropped the superscript “near” from Rnear
Nℓm in
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−2ΥNℓm for easier readability, and we use the shorthand
notation k1 = ω̄N1ℓ1m1

+ m1 etc. already introduced
above. The orthogonality of the spin-weighted spheroidal
harmonics −2Sℓm in −2ΥNℓm was already used to obtain
the Kronecker deltas.

We now use the representation of radial wavefunction

in terms of finite polynomials (120), leading to

〈〈−2ΥN1ℓ1m1
,−2ΥN2ℓ2m3

〉〉near =

− δℓ1ℓ2
δm1m2

2
√

2M
10
3 2− i

2
(k1+k2)

N1+N2
∑

j=0

−2P
(N1,N2)
j

×
c/

√
4ε

∫

0

dy(γ̂ − êy) (1 + y)β̂ yα̂(−y)j−3

(D6)

where we substituted x̄ = 2y and used the definitions
(124). The integral over y has to be integrated, a priori,
over a complex contour described in [41] in order to make
it convergent. However, as described in [60], this proce-
dure is equivalent to a “minimal subtraction scheme”,
where the lower boundary of the integral is replaced by
a small positive regulator, and then all divergent parts
of the integral are subtracted off. This, in turn, is equiv-
alent, to evaluating the integral in Eq. (D6), using the
analytic extension of the Euler beta-function. We find
that, as the extremality parameter ε → 0,

c/
√

4ε
∫

0

dy(γ̂ − êy) (1 + y)β̂ yα̂(−y)j−3 =
(−1)jΓ(j + α̂− 2)Γ(1 − j − α̂− β̂)[γ̂(α̂+ β̂ + j − 1) + ê(α̂+ j − 2)]

Γ(−β̂)

+

(
√

4ε

c

)1−α̂−β̂−j (
(−1)j ê

j + α̂+ β̂ − 1
+O (ε)

)

(D7)

where we estimate the real part of the exponent of the
correction as

Re
(

1 − α̂− β̂ − j
)

= Re(h1+) + Re(h2+) − j +N1 +N2

≥ Re(h1+) + Re(h2+) > 0

(D8)

since, we have j ≤ N1 + N2 in the j-sum. This gives
Eq. (V E). For N1 = N2 = N , this final result may be
simplified using identities for sums involving quotients of
Gamma-functions, leading to the expression given above
in Eq. (125), using the notation −2A

near
Nℓm for the limit

ε → 0 of 〈〈−2ΥNℓm,−2ΥNℓm〉〉near.

Eq. (125) may be further simplified for overtone num-
ber N = 0:

−2A
near
0ℓm = M

10
3 2

7
2

−(h++im) Γ(2h+)Γ(−h+ − im+ 3)

Γ(h+ − im+ 2)
.

(D9)

For s = +2, we can use (64) and get

+2A
near
0ℓm =M

2
3 2− 1

2
−(h++im)×

Γ(2h+)Γ(−h+ − im+ 3)Γ(h+ + im+ 2)

|Γ(h+ − im− 2)|2 .

(D10)

These normalization factors may be approximated for
ℓ ≫ 1 by means of Stirling’s formula [78, 5.11.7] and
the Euler reflection formula [78, 5.5.3] for the Gamma
function, leading to (m 6= 0):

−2A0ℓm ∼ M
10
3 2ℓ−im+ 7

2 i
√
π(−1)ℓℓ

1
2 csch(πm), (D11)

and

+2A0ℓm ∼ M
2
3 2ℓ−im− 1

2 i
√
π(−1)ℓℓ

17
2 csch(πm). (D12)

1. Axisymmetric QNMs

The treatment of QNMs in the nNHEK approximation
ε ≪ 1 is qualitatively different, and in fact more subtle,
for axisymmetric (m = 0) modes than for m 6= 0, as has
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been noted in several works before, see e.g., [18, 93]. The
conceptual reason for this is that the branch cut starting
at ω = 0 in the complex frequency plane characterizing
the contribution in the retarded Green’s function (see
Sec. IV B) gets parametrically close to the isolated poles
at the QNM frequencies ω ∼ −iε(N + ℓ+ 1)/(2M).

For the m = 0 QNMs, one may first observe that our
approximation of the angular Teukolsky equation (101)
in the regime ε ≪ 1 leads to the equation for axisym-
metric (m = 0) spin-weighted spherical harmonics (140),
rather than that for the spin-weighted spheroidal har-
monics (102), as would be the case for m 6= 0. The
angular eigenvalue of the spin-weighted spherical har-
monic equation is sEℓ0 = sĒℓ = ℓ(ℓ + 1), and substi-
tuting this value into the definition (109) of sh+, we

find that sh+ = ℓ + 1. In view of Eqs. (D9), (D10)
we would thereby conclude for instance that the scalar
product of an axisymmetric QNM would diverge for
s = ±2,m = 0, N = 0. A similar conclusion can be
drawn for all axisymmetric QNMs.

In order to be self-consistent, a more precise anal-
ysis is necessary, which we now provide. Firstly, we
must improve our approximation (101) of the solutions
to the angular Teukolsy equation by including terms of
O(ε). For this, we self-consistently assume in the full
angular Teukolsky equation (53) that m = 0 and that
ωNℓ0 = −iε(h+ + N)/(2M) = −iε(ℓ + 1 + N)/(2M) up
to terms of order O(ε2), cf. Eqs. (118), (95). Neglecting
O(ε3)-terms, the approximation to the angular Teukolsky
equation replacing Eq. (101) becomes

[

1

sin θ̄

d

dθ̄

(

sin θ̄
d

dθ̄

)

+

(

sEℓ0 − s2

sin2 θ̄
− 1

4
ε2(ℓ + 1 +N)2 cos2 θ̄ + iε(ℓ+ 1 +N)s cos θ

)]

sSℓ0(θ̄) = 0. (D13)

The ε dependent terms are next considered as pertur-
bations to the m = 0 spin-weighted spherical harmonic
operator along similar lines described already described
below Eq. (140). Using e.g., results in [88], we get

sEℓ0 = sĒℓ0 − ε2

4
(ℓ+N + 1)2(su(ℓ+1) − suℓ − 1) +O(ε3).

(D14)
Here

suℓ =
2(ℓ2 − s2)2

(4ℓ2 − 1)ℓ
, (D15)

and sĒℓ0 = ℓ(ℓ+ 1) is the unperturbed eigenvalue. Next,
we recall that [Eq. (109) for m = 0]

sh+ℓ0 =
1

2
+

1

2
sηℓ0, sηℓ0 =

√

1 + 4sEℓ0. (D16)

For small ε we obtain

sh+ℓ0 ∼ ℓ+ 1 +
[2ℓ(ℓ+ 1) − 1]ε2(ℓ+N + 1)2

4(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
+O(ε3),

(D17)
which, for ℓ ≫ 1, εℓ ≪ 1, is approximated by

sh+ℓ0 ∼ ℓ+ 1 +
1

16
ε2(ℓ + 2N) +O(ε3). (D18)

In particular, the quantity sh+ℓ0 equation gets correc-
tions only at second order in ε.

We must then also improve our approximation (101) of
the solutions to the angular Teukolsy equation by includ-
ing terms of order O(ε) i.e., rather than setting aω = 0
in the case m = 0, we should set aω = −iε(ℓ+ 1 +N)/2.
Consequently, the first relevant terms in the series of the
angular eigenfunction are obtained by setting aω to this
value in the small aω-expansion [84], i.e.

sSℓ0 = sYℓ0−
isε(ℓ+ 1 +N)

2

(

sαℓ0

ℓ
sY(ℓ−1)0 − sα(ℓ+1)0

ℓ+ 1
sY(ℓ+1)0

)

+ . . .

(D19)

Note that, to be self-consistent, we must have ε(N+ℓ) ≪
1, so the correction term is very small, and sαℓ0 has been
defined in Eq. (143).

Next we need to analyze the radial Teukolsky equation
(54) including the leading correction in ε ≪ 1 for m = 0.
It turns out that the leading correction occurs already
at O(ε), so we can neglect the leading O(ε2)-correction
that we found for sEℓ0 from the angular equation. In
fact, starting e.g., from Eq. (54), we find

[

f−s d

dx̄

(

fs+1 d

dx̄

)

− sV
near

kℓ0 (x̄) − 2kε

(

(x̄+ 1)is+ k

x̄+ 2
+ is

)

+O(ε2)

]

sR
near
kℓ0 = 0, (D20)

where the potential sV
near

kℓ0 is given by Eq. (106). By inspection, the total potential in the above equation is
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given by

sV
near

kℓ0 (x̄) + 2kε

(

(x̄+ 1)is+ k

x̄+ 2
+ is

)

=sV
near

kℓ(−iε(ℓ+N+1)) +O(ε2),

(D21)

which follows from Eq. (106) by a straightforward cal-
culation, keeping terms up to and including of O(ε). In
other words, for m = 0, up to and including O(ε), we
should simply make the replacement

m → −iε(ℓ+N + 1) (D22)

in the potential (106) for the near zone radial Teukol-
sky equation for the m 6= 0 case, keeping all ε-dependent
terms up to and including O(ε). A similar analysis with
the same conclusion can be carried out for the far zone
equation. The rest of the analysis then proceeds pre-
cisely as before for m 6= 0: To find the solutions kN of
the matching condition (117), we should make the sub-
stitution (D22), and use the approximation (117) for h+.
Since the O(ε2)-term in Eq. (D18) is subleading, we ob-
tain kN = m − i(h+ + N) → −i(1 + ε)(ℓ + N + 1). In
other words, we should simply make the change (D22) to
m while leaving h+ as it is in all formulas in the m 6= 0
case.30.

For example, for the normalization constant ±2A
near
Nℓ0

(scalar product of QNM as ε ≪ 1 for m = 0) as given
in Eqs. (125), (129) for m 6= 0, we find that, identifying
ℓ+ 1 = h+ to shorten the expressions:

−2A
near
Nℓ0 = (−1)NM

10
3 2−(h++N)+3N !×

√
2Γ(2h+ +N)Γ[−h+ − ε(h+ +N) −N + 3]

Γ[h+ − ε(h+ + N) + 2][h+ + ε(h+ +N) − 2]N
.

(D23)

For s = 2, there is a similar formula which is obtained

from Eqs. (64), (108):

+2A
near
Nℓ0 = (−1)NM

2
3 2−(h++N)N !×

Γ (h+ + ε(h+ +N) + 2) Γ[2h+ +N ]√
2Γ [h+ − ε(h+ +N) − 2]

×

Γ[−h+ − ε(h+ +N) −N + 3]

Γ[h+ + ε(h+ +N) +N − 2]
.

(D24)

Taking additionally ℓ ≫ 1 while εℓ ≪ 1, we find for
N = 0:

−2A
near
0ℓ0 ≈ − M

10
3 (−1)ℓ2ℓ+ 7

2 ℓ− 1
2

√
πε

,

+2A
near
0ℓ0 ≈ − M

2
3 (−1)ℓ2ℓ− 1

2 ℓ
15
2

√
πε

.

(D25)

In particular, we capture the precise leading form of the
divergence of this normalization constant as ε → 0.

Appendix E: Computation of ST in nNHEK

Here we give the expression for ST in nNHEK, acting
on two symmetric tensors ĥ1 ab, ĥ2 ab in ingoing radiation
gauge. Recall that S, T were given by Eqs. (42), (76).
We first give the expression as a quadratic form, i.e. when
ĥ1 ab = ĥ2 ab = ĥab:

30 A similar conclusion has been reached before in the context of extremal black holes, see e.g., [18, 93].
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ST [ĥ, ĥ] =
1

4π

{

2τ ′2ĥmm Þ
2
ĥmm + 4τ ′(Þ ĥnm)Þ

2
ĥmm + 4τ ′ĥmm Þ

3
ĥnm − τ ′ĥmm Þ

2
ð

′
ĥmm − (Þ

2
ĥmm)(ð

′
ĥmm)τ ′

+2
(

τ ′2 + τ̄2
)

(Þ ĥmm)2 + 2(Þ
2
ĥnm)2 + 2ĥmmτ̄

2 Þ
2
ĥmm + 2ĥm̄m̄τ τ̄

′ Þ
2
ĥmm + 2τ̄(Þ ĥnm)(Þ

2
ĥmm)

−4τ(Þ ĥnm̄)(Þ
2
ĥmm) + 2τ̄ ′(Þ ĥnm̄)(Þ

2
ĥmm) − 2(Þ

2
ĥnn)(Þ

2
ĥmm) + 2ĥmmτ τ̄

′ Þ
2
ĥm̄m̄ + 2(Þ ĥnm)(Þ

3
ĥnm)

+2ĥmmτ(Þ
3
ĥnm̄) + 2ĥmmτ̄

′(Þ
3
ĥnm̄) − 3ĥnm̄τ(Þ

3
ĥmm) + ĥnmτ̄ (Þ

3
ĥmm) − 3(Þ ĥnn)(Þ

3
ĥmm)

+ĥmm(Þ
4
ĥnn) − ĥnn(Þ

4
ĥmm) − 2ĥmm(Þ

3
ðĥnm̄) + 2ĥnm̄(Þ

3
ðĥmm) − 2ĥmm(Þ

3
ð

′
ĥnm) + 2ĥnm(Þ

3
ð

′
ĥmm)

+3ĥm̄m̄τ(Þ
2
ðĥmm) − ĥm̄m̄τ̄

′(Þ
2
ðĥmm) + 3(Þ ĥnm̄)(Þ

2
ðĥmm) − 2ĥmmτ(Þ

2
ðĥm̄m̄) − 2ĥmmτ̄

′(Þ
2
ðĥm̄m̄)

−ĥm̄m̄(Þ
2
ð

2
ĥmm) + ĥmm(Þ

2
ð

2
ĥm̄m̄) − ĥmmτ̄ (Þ

2
ð

′
ĥmm) + 5(Þ ĥnm)(Þ

2
ð

′
ĥmm) + 4(Þ

2
ĥmm)(Þðĥnm̄)

−4(Þ
2
ĥmm)(Þð

′
ĥnm) + 4(Þ

2
ĥnm)(Þð

′
ĥmm) + (Þ ĥmm)

[

2τ̄ ′2 Þ ĥm̄m̄ + 4Þ
2
ĥnm̄τ̄

′ − 2Þðĥm̄m̄τ̄
′ + τ Þ

2
ĥnm̄

+(8τ ′ + τ̄)Þ
2
ĥnm + Þ

3
ĥnn − Þ

2
ðĥnm̄ − 5Þ

2
ð

′
ĥnm − 2τ Þðĥm̄m̄ − 2τ ′ Þð

′
ĥmm − 2τ̄ Þð

′
ĥmm

]

+3(Þ
3
ĥmm)(ðĥnm̄) + τ(Þ

2
ĥm̄m̄)(ðĥmm) − τ̄ ′(Þ

2
ĥm̄m̄)(ðĥmm) − (Þ

3
ĥnm̄)(ðĥmm) + (Þ

2
ðĥm̄m̄)(ðĥmm)

+4τ(Þ
2
ĥmm)(ðĥm̄m̄) − 2τ̄ ′(Þ

2
ĥmm)(ðĥm̄m̄) − 3(Þ

2
ð(ĥmm)(ðĥm̄m̄) − 2(Þ

2
ĥmm)(ð

2
ĥm̄m̄) − (Þ

3
ĥmm)(ð

′
ĥnm)

−τ̄(Þ
2
ĥmm)(ð

′
ĥmm) + (Þ

3
ĥnm)(ð

′
ĥmm)

}

(E1)

For the general case, we simply apply the polarization
formula relating bilinear and quadratic forms,

ST [ĥ1, ĥ2] =
1

4
{ST [ĥ1+ĥ2, ĥ1+ĥ2]−ST [ĥ1−ĥ2, ĥ1−ĥ2]}.

(E2)

Appendix F: Þ,Þ
′

as ladder operators in nNHEK

In this section we show that in nNHEK, the GHP op-

erators Þ and Þ
′

act as ladder operators on a suitably
defined set of modes closely related to the mode solutions
of the Teukolsky equation.

We begin by defining

s,νRkℓm(x̄) = sCkℓmx̄
−(s+ν)− ik

2

(

x̄

2
+ 1

)−(s+ν)+i( k
2

−m)
×

2F1

(

sh+ − im− (s+ ν), sh− − im− (s+ ν); 1 − ik − (s+ ν); − x̄

2

)

,

(F1)

where sh± ≡ sh±ℓm are defined by Eq. (109) in terms
of s (not s + ν) via the eigenvalue sEℓm of the angular
equation in nNHEK. ν = 0,±1,±2, . . . is a new index.
An alternative representation valid at a QNM frequency
kN ≡ skNℓm is

s,νRNℓm(x̄) =sCNℓmx̄
−(s+ν)− ikN

2

(

1 +
x̄

2

)−i
(

kN
2

−m
)

×
N
∑

j=0

s,νP
(N)
j

(

− x̄

2

)j

(F2)

where

s,νP
(N)
j =

(−N)j(1 − 2sh+ −N)j

(1 − sh+ −N − im− (s+ ν))j j!
. (F3)

E.g., for s = −2, ν = 0 we recover the QNMs in nNHEK,

−2,0RNℓm = −2R
near
Nℓm. Likewise, since sEℓm and sh±

depend on s only through |s|, we also have −2,4RNℓm ∝
+2R

near
Nℓm. In this sense, the new radial functions s,νRkℓm

interpolate the QNMs for opposite spins ±s. As we will

see, the operators Þ,Þ
′

induce ladder operators raising
and lowering ν.

It can be shown that the functions s,νRkℓm satisfy the
following differential equation:

[

f−(s+ν) d

dx̄

(

fs+ν+1 d

dx̄

)

− s,νV (x̄)

]

s,νRkℓm = 0

(F4)
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with the potential

s,νV = −3

4
m2 − (s+ ν)(s+ ν + 1) + sEℓm − 2i(s+ 1)m

+
(mx̄+ k)[2i(s+ ν) − k + 2x̄i(s+ ν) −mx̄]

f
,

(F5)

where we stress again that sEℓm is the spin s eigenvalue
(not s + ν) of the angular equation in nNHEK. For the
boundary conditions, we compute

s,νRkℓm ∼ sCx̄
−(s+ν)− ik

2 , x̄ → 0

s,νRkℓm ∼ sC
(

s,νa− x̄
−sh−−(s+1) + s,νa+ x̄

−sh+−(s+1)
)

,

x̄ → ∞ ,

(F6)

with

s,νa+ =
2sh+− ik

2 Γ(1 − 2sh+)Γ(1 − ik − (s+ ν))

Γ(1 − sh+ + im− ik)Γ(1 − sh+ − im− (s+ ν))

s,νa− = s,νa+|h+→h−
.

(F7)

Consider now a mode sΥnear
kℓm ⊜ {2s, 0}

sΥnear
kℓm(x̄µ) = e−iω̄t̄+imφ̄

sSℓm(θ̄)sR
near
kℓm(x̄), (F8)

with the usual identification of k = ω̄ + m in the near
zone. To this mode, we apply Þ using the values of the
spin coefficients in nNHEK [55] recalled in App. A. We
find

Þ[sΥnear
kℓm(x̄µ)] = e−iω̄t̄+imφ̄

sSℓm(θ̄)

×
(

d

dx̄
− i

k +mx̄

f

)

sR
near
kℓm(x̄).

(F9)

By inspection, the last term involving the differential op-
erator acting on sR

near
kℓm is a solution to Eq. (F4) for

ν = 1, satisfying the boundary condition (F6) up to the
constant −ik − s. Consequently, we have

Þ[sΥnear
kℓm(x̄µ)] = e−iω̄t̄+imφ̄

sSℓm(θ̄)

× (−ik − s)s,1Rkℓm(x̄).
(F10)

Iterating this argument ν times, we find that

Þ
ν
[sΥnear

kℓm(x̄µ)] = e−iω̄t̄+imφ̄
sSℓm(θ̄)







ν−1
∏

j=0

[−ik − (s+ j)]







s,νRkℓm(x̄). (F11)

Thus, we see that Þ is a kind of raising operator for
the index ν in the system of functions s,νRkℓm(x̄). The
relation (108) follows as the special case ν = 4, s = −2
of Eq. (F11).3132

The operator Þ
′

can be analyzed in an analogous
manner. As in the main text, we use the shorthand
ζ = (−Ψ2)− 1

3 = M
2
3 (1 − i cos θ̄), noting that |ζ|2 and

Þ
′

commute.
Analogously to Eq. (F10), we compute

Þ
′
[sΥnear

kℓm(x̄µ)] = − 1

2M
2
3 |ζ|2

e−iω̄t̄+imφ̄
sSℓm(θ̄)

× f

(

d

dx̄
+
sf ′ + i(k +mx̄)

f

)

sR
near
kℓm(x̄).

(F15)

By inspection, the term in the last line involving the

differential operator acting on sR
near
kℓm is a solution to Eq.

(F4) for ν = −1, satisfying the boundary condition (F6)
up to a constant that is easily computed. Consequently,
this function must in fact be equal to s,−1Rkℓm times
that constant. More precisely,

Þ
′
[sΥnear

kℓm(x̄µ)] = e−iω̄t̄+imφ̄
sSℓm(θ̄)

× (sh+ − im− s)(sh+ + im+ s− 1)

2M
2
3 |ζ|2(ik + s− 1)

s,−1Rkℓm(x̄).

(F16)

Iterating this formula ν times, we similarly find33

31 Observe that

+2Rnear
Nℓm = +2CNℓm −2,4RNℓm (F12)

32 Using the QNM approximation, for m = 0 and at order O(ε),
the coefficient

ν−1
∏

j=0

(−ikN − (s + j)) =

ν−1
∏

j=0

(−N − sh+ − (s + j)) (F13)

vanishes whenever

N = −1 − ℓ − s − j. (F14)

where we used sh+ = ℓ + 1 + O(ε).

33 Mind that, unlike Þ, the form of Þ
′

in the given tetrad explicitly
depends on the GHP weights of the quantity that it acts on.
This dependence must be properly taken into account in order
to obtain the following expression.
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Þ
′ν

[sΥnear
kℓm(x̄µ)] = e−iω̄t̄+imφ̄

sSℓm(θ̄)







ν−1
∏

j=0

(sh+ − im− s+ j)(sh+ + im+ s− j − 1)

2M
2
3 |ζ|2[ik + (s− j − 1)]







s,−νRkℓm(x̄). (F17)

Thus, we see that Þ
′

is a kind of lowering operator for
the index ν in the system of functions s,νRkℓm(x̄). The
formula (128) can be obtained from the above raising and
lowering relations taking s = −2 and ν = 4 first in Eq.
(F11) and then s = 2 and ν = 4 in Eq. (F17), using

2,−4RNℓm = +2CNℓm −2,0RNℓm.

Appendix G: ð,ð
′

and ladder operators in nNHEK

The GHP operators ð,ð
′

are related to spin-lowering
and spin-raising operators in nNHEK. In the NP tetrad
(34), and when acting on a GHP scalar with GHP weights
⊜ {p, q}, spin s = (p− q)/2, and harmonic φ̄-dependence

eimφ̄, we may effectively substitute

ð → 1√
2M(1 + i cos θ̄)

(

d

dθ̄
−m csc θ̄ − s cot θ̄

+
m sin θ̄

2
+

qi sin θ̄

1 + i cos θ̄

)

ð
′ → 1√

2M(1 − i cos θ̄)

(

d

dθ̄
+m csc θ̄ + s cot θ̄

− m sin θ̄

2
− pi sin θ̄

1 − i cos θ̄

)

(G1)

In these expressions, we can recognize the operators

sL†
m = − 1√

2

(

d

dθ̄
−m csc θ̄ − s cot θ̄

)

, (G2a)

sLm = − 1√
2

(

d

dθ̄
+m csc θ̄ + s cot θ̄

)

. (G2b)

The operators sLm and sL†
m are known (see e.g., [56]) to

be spin-lowering respectively spin-raising operators for
the spin-weighted spherical harmonics sYℓm [94], in the
sense that

−sL†
m sYℓm =

√

(ℓ − s)(ℓ+ s+ 1)

2
s+1Yℓm, (G3a)

sLm sYℓm = −
√

(ℓ + s)(ℓ− s+ 1)

2
s−1Yℓm. (G3b)

These relations, and the initial condition 0Yℓm = Yℓm,
where the latter denote the ordinary unweighted spheri-

cal harmonics without the harmonic factor eimφ̄, may be

seen as a possible definition of the spin-weighted spheri-
cal harmonics.

Appendix H: Large ℓi analysis of angular integrals

In this appendix we show how to evaluate the angular
overlap integrals, [123] [see Eq. (154)] for ℓi ≫ 1, either
for all i = 1, 2, 3 or for a subset if i’s. To simplify the
discussion, we shall assume that mi are arbitrary but
fixed, but a variation of the argument would lead to the
same conclusion for possibly large |mi| so long as |mi| ≪
ℓi.

We first need to clarify the nature of our large ℓi limit.
Generally, we will distinguish different cases. First, we
consider the case when all ℓi, i = 1, 2, 3 go to infinity. To
have a single large semiclassical parameter, L, we set, as
in the main text ℓi = Lℓ̄i, where ℓ̄i ≥ c > 0, i = 1, 2, 3.
We then view the angular overlap integral (154) as a
function [123](ℓ̄1, ℓ̄2, ℓ̄3) that is parameterized by L. We
will generally say that such a function, gL(ℓ̄1, ℓ̄2, ℓ̄3) con-
verges to a function g(ℓ̄1, ℓ̄2, ℓ̄3), if, for any smooth com-
pactly supported testfunction ϕ with support restricted
to ℓ̄i ≥ c, we have

lim
L→∞

∫

d3ℓ̄(gLϕ)(ℓ̄1, ℓ̄2, ℓ̄3)

=

∫

d3ℓ̄(gϕ)(ℓ̄1, ℓ̄2, ℓ̄3).

(H1)

Thus, our notion of convergence is in the weak (distribu-
tional) sense. We will write this as

gL ∼w g. (H2)

This notion of convergence is useful because we would
like to average over any local oscillation of the overlap
integral [123] in the ℓi’s, and because we will need to sum
the overlap coefficients over the ℓi in the formulation of
our dynamical system.

We first recall asymptotic expansions for the spin-
weighted spherical harmonics. For fixed m ≤ 0, s = 0, an
asymptotic formula (uniform in 0 ≤ θ ≤ π/2) for large
ℓ has been given by [95]. Combining their result with
well-known reflection formulas for the ordinary spherical
harmonic under θ̄ → π − θ̄, the asymptotic formula may
be presented for s = 0 as34

34 As stated, the formula is valid for m ≤ 0. For m > 0, one can use the mentioned reflection formula.
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Yℓm(θ̄) =

√

ℓ

2π
×







√

θ̄
sin θ̄

J−m

[(

ℓ+ 1
2

)

θ̄
]

0 ≤ θ ≤ π
2

(−1)ℓ−m
√

π−θ̄
sin θ̄

J−m

[(

ℓ+ 1
2

)

(π − θ̄)
]

π
2 < θ̄ ≤ π

+O
(m

ℓ

)

, (H3)

where Jν is a Bessel function, and where O(m/ℓ) roughly
indicates a function of this order, uniformly in θ ∈ [0, π].
The precise error bound is actually more subtle since it
involves the “envelope” of the Bessel function given in
terms of its zeros. Since the distribution of zeros is itself

a difficult issue, we will proceed heuristically here and
leave a more precise discussion aside.

In order to transfer this estimate for the unweighted
spherical harmonics Ylm to the spin-weighted harmonics

sYlm, we use the asymptotic relationship

sYℓm(θ̄) =

{

(−1)sYℓ(m+s)(θ̄) 0 ≤ θ̄ ≤ π
2

(−1)s+ℓ+mYℓ(m−s)(π − θ̄) π
2 < θ ≤ π,

+O
(m

ℓ

)

, (H4)

where the convergence is uniform in θ ∈ [0, π], and the
error is understood in the same sense. This relation can
be obtained from (G3) and (H3), noting that the asymp-
totic relation (H3) can be bootstraped to arbitrarily high
derivatives when combined with (G3) and a standard re-
currence formula for the Legendre functions [78, 14.10.4],
and for the Bessel functions Jn [78, 10.6.2].

We have thereby reduced the asymptotic analysis of
the angular integrals [123] to the integrals

[123]0 := L
3
2

√

ℓ̄1ℓ̄2ℓ̄3

8π3

π/2
∫

0

dθ̄
1 − i cos θ̄

1 + i cos θ̄
(sin θ̄)− 1

2 θ̄
3
2

×
3
∏

j=1

Jµj [(ℓj + 1
2 )θ̄],

(H5)

where µi = mi + si. The relationship to the original

overlap integral (154) is

L
1
2 · [123] ∼w L

1
2 ·
{

[123]0 + (−1)µS+ℓS [123]∗0
∣

∣

si→−si

}

(H6)
where here and in the following, we use “S” for the sum
as in e.g., ℓS = ℓ1 + ℓ2 + ℓ3.

Due to the somewhat subtle notion of error in our
asymptotic estimate for the spherical harmonics, the
above arguments constitute nor rigorous proof of the
asymptotic relation ∼w in Eq. (H6). But we have tested
it numerically and found very good agreement already
for ℓi’s of the order of 102 and mi of order unity.

We have not found a way to carry out the integral (H5)
in closed form, so we now proceed with further analysis
reducing it, in the sense of ∼w, to a manageable integral.

Into Eq. (H5), we substitute a standard integral rep-
resentation [78, 10.9.2] of the Bessel function Jn, which
leads to

[123]0 = L
3
2 iµS

√

ℓ̄1ℓ̄2ℓ̄3

8π9

π/2
∫

0

dθ̄

∫

[0,π]3

d3
z eiLf(θ̄,z)g(θ̄, z) (H7)

where z = (z1, z2, z3) and where

f(θ̄, z) = θ̄
∑

i

ℓ̄i cos zi

g(θ̄, z) =
e

iθ̄
2

∑

i
cos zi

(sin θ̄)1/2

[

∏

i

cos(µizi)

]

1 − i cos θ̄

1 + i cos θ̄
θ̄

3
2 .

(H8)

The form of the z-integral suggests using the stationary

phase method for large semiclassical parameter L for θ̄
values such that Lθ̄ ≫ 1. With this in mind, we split
the θ̄ integration into the interval from 0 to 1/

√
L, and

the interval from 1/
√
L to π/2. For the latter integral,

denoted by [123]
≥1/

√
L

0 we may then confidently apply
the stationary phase method to the z integral.

According to this method, the dominant contribution

to [123]
≥1/

√
L

0 is determined by the points of stationary
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phase where ∇zf = 0, which are at zi = 0, π. Evaluating that contribution leads to

L
1
2 · [123]

≥1/
√

L
0 ∼w

√
Le

iπ
4 iµS

8π3

∑

{±}

{

∏

i

pi[(±1)i]

} π/2
∫

1/
√

L

dθ̄
(cos θ̄ + i)

√
csc θ̄

cos θ̄ − i
eiLθ̄

∑

i
(±1)iℓ̄i , (H9)

where an error term of order O(L−1/2 logL) from the cor-
responding error in the stationary phase approximation
has been discarded in Eq. (H9). The first sum is over a
distinct sign (±1)i for each i = 1, 2, 3, corresponding to
the different saddles in the stationary phase approxima-
tion and

pi(x) =

{

1, x = +1

i(−1)µi , x = −1.
(H10)

If we now integrate the expression (H9) against a test-
function ϕ(ℓ̄1, ℓ̄2, ℓ̄3) compactly supported in ℓ̄i ≥ c > 0

and use a standard integration by parts trick, then it is
easy to see that the resulting expression decays faster
than any inverse power of L.

Hence, we see that L1/2 · [123]
≥1/

√
L

0 ∼w 0, and we

can concentrate on L1/2 · [123]
≤1/

√
L

0 . In that integral,

we may safely replace (1−i cos θ̄)θ̄1/2

(1+i cos θ̄)(sin θ̄)1/2
by its value at

θ̄ = 0, i.e. −i. To see this more clearly, we note that the
error incurred by this replacement is estimated as follows
after smearing with a testfunction ϕ(ℓ̄1, ℓ̄2, ℓ̄3), and using
again the integral representation [78, 10.9.2] of the Bessel
function:

|error| =

∣

∣

∣

∣

L2

∫

[0,π]3

d3
z

1/
√

L
∫

0

dθ̄ O(θ̄2) ϕ̂(Lθ̄ cos z1, Lθ̄ cos z2, Lθ̄ cos z3)

∣

∣

∣

∣

. L2− p
2

∫

[0,π]3

d3
z

1/
√

L
∫

0

dθ̄ θ̄2−p

(

1 + L2θ̄2
∑

i

cos2 zi

)−M

. L−1+ p
2

∫

[0,π]3

d3
z

(
∑

i cos2 zi)(3−p)/2

√
L
∫

0

dθ̄ θ̄2−p
(

1 + θ̄2
)−M

. L−1+ p
2 ,

(H11)

where the z integral converges provided that p > 0, and
where we used that the Fourier transformed testfunction,
ϕ̂, is rapidly decaying, i.e., M is as large as we like, say
M > (3 − p)/2 in order to make the θ̄ integral converge
for arbitrary L. Therefore, taking e.g., p = 1, we see that
the error can be neglected in the sense of ∼w.

Thus we conclude that

L
1
2 · [123]0 ∼wL

1
2 · [123]

≤1/
√

L
0

∼w − iL2

√

ℓ̄1ℓ̄2ℓ̄3

8π3

1/
√

L
∫

0

dθ̄ θ̄

3
∏

j=1

Jµj [(ℓj + 1
2 )θ̄]

∼w − i

√

ℓ̄1ℓ̄2ℓ̄3

8π3

√
L
∫

0

dθ̄ θ̄

3
∏

j=1

Jµj (ℓ̄j θ̄),

(H12)

The large L limit of the last integral has to be understood
in the sense of distributions in the ℓ̄j. It has been evalu-

ated in the case, relevant for us, that µ3 = µ1 +µ2, ℓ̄j > 0
[96, Table I],
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∞
∫

0

dθ̄ θ̄

3
∏

j=1

Jµj (ℓ̄j θ̄) =

{

1
πℓ̄1ℓ̄2

cos(µ2χ1−µ1χ2)
sin χ3

if |ℓ̄1 − ℓ̄2| < ℓ̄3 < ℓ̄1 + ℓ̄2,

0 ℓ̄3 < |ℓ̄1 − ℓ̄2| or ℓ̄3 > ℓ̄1 + ℓ̄2.
(H13)

In the first case, ℓ̄j are the side lengths of a triangle, and the angle opposite ℓ̄i is called χi. Inserting this back into
relation (H6) and remembering that µi = mi + si finally
leads to

L
1
2 · [123] ∼w

i

sin(χ3)

√

ℓ̄3

2π5ℓ̄1ℓ̄2

[

Θ(ℓ̄3 − |ℓ̄1 − ℓ̄2|) − Θ(ℓ̄3 − |ℓ̄1 + ℓ̄2|)
]

×
{

sin(m2χ1 −m1χ2) sin(s2χ1 − s1χ2), ℓS even,

− cos(m2χ1 −m1χ2) cos(s2χ1 − s1χ2), ℓS odd.

(H14)

A similar analysis can be carried out for integrals of
the form

[123] :=

π
∫

0

dθ̄(sin θ̄)S1Y2Y3(θ̄), (H15)

where S1 is some well behaved function of θ̄ e.g., smooth
on [0, π] up to and including the boundary of the interval,
which is independent of ℓ2, ℓ3. Y2, Y3 are spin weighted
spherical harmonics, as before. In our computation of
the overlap coefficients in the body of the paper, S1 is a
spin-raising or lowering operator applied to a spheroidal
harmonic for a fixed s1, ℓ1,m1 times certain trigonomet-
ric factors. But the analysis is just the same for any S1

with the above properties, so we will not specify it.

The limit that we need to consider is that
only ℓi, i = 2, 3 go to infinity. To have a single large semi-
classical parameter, L, we again set, as in the main text
ℓi = Lℓ̄i, where ℓ̄i ≥ c > 0, i = 2, 3.

As in the previous case, we first observe that the sym-
metries of the spin-weighted spherical harmonics allow
us to consider separately and analogously the integral
from 0 to π/2, and from π/2 to π. In each of these in-
tervals, we approximate the spin-weighted spherical har-
monics in the large L limit by Bessel functions, as in Eqs.

(H4),(H3). Since both resulting integrals have the same
structure, we may restrict attention to only one of them,
say

[123]0 =
L
√

ℓ̄2ℓ̄3

2π

π/2
∫

0

dθ̄ θ̄S1(θ̄)Jµ2
[(ℓ2+ 1

2 )θ̄]Jµ3
[(ℓ3+ 1

2 )θ̄].

(H16)
As before, we now split the θ̄ integration into the interval
from 0 to 1/

√
L and the interval from 1/

√
L to π/2. As

before, the latter integral may be safely treated with the
method of stationary phase, and one sees in that way

that L[123]
≥1/

√
L

0 ∼w 0. The first integration is first

transformed to the integration variable x = Lθ̄. Using
the smoothness of F up to and including θ̄ = 0, one
shows by an integration by parts argument that S1(θ̄)
may safely replaced by S1(0) up to subleading terms in
inverse powers of L, and be pulled out of the integral.
Thus, we can say that

L · [123]0 ∼w

√

ℓ̄2ℓ̄3S1(0)

2π

√
L
∫

0

dxxJµ2
(ℓ̄2x)Jµ3

(ℓ̄3x),

(H17)
In the large L limit, the resulting integral must be un-
derstood as a distribution in the continuous variables ℓ̄i

[96, Eq. 3.2a], yielding altogether (recall µi = mi + si)

L · [123] ∼w Θ(µ3 + µ2)

{

S1(0)[(m2, s2, ℓ2), (m3, s2, ℓ3)] + (−1)ℓ2+ℓ3+µ2+µ3S1(π)[(m2,−s2, ℓ2), (m3,−s3, ℓ3)]

}

+

(−1)µ3+µ2 Θ(−µ3 − µ2 − 1)

{

S1(0)[(−m2,−s2, ℓ2), (−m3,−s3, ℓ3)] + (−1)ℓ2+ℓ3+µ2+µ3S1(π)[(−m2, s2, ℓ2), (−m3, s2, ℓ3)]

}

(H18)
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with

[(m2, s2, ℓ2), (m3, s2, ℓ3)] =

√

ℓ̄2ℓ̄3

2π

[

cos[ π
2 (µ3 − µ2)]

ℓ̄2

δ(ℓ̄2 − ℓ̄3) + P.P.

(

µ2
3 − µ2

2

ℓ̄2
3 − ℓ̄2

2

)

×
{

Θ(ℓ̄2 − ℓ̄3)
sin[ π

2 (µ3 − µ2)]Γ[ 1
2 (µ2 + µ3)]Γ[ 1

2 (µ3 − µ2)]

2πΓ(µ3 + 1)

(

ℓ̄3

ℓ̄2

)µ3

2F1

(

1

2
(µ2 + µ3),

1

2
(µ3 − µ2), µ3 + 1;

ℓ̄2
3

ℓ̄2
2

)

+ (2 ↔ 3)

}]

(H19)

Here, P.P. denotes the principal part prescription for the
distribution 1/x.35

Lastly, we require in the main part of the paper inte-
grals of the form

[123] :=

π
∫

0

dθ̄(sin θ̄)S1S2Y3(θ̄), (H20)

where S1, S2 are well behaved functions of θ̄ e.g., smooth
on [0, π] up to and including the boundary of the interval.
Y3 is spin weighted spherical harmonic with parameters
(s3, ℓ3,m3). In our computation of the overlap coeffi-
cients in the body of the paper, S1, S2 are spheroidal har-
monic for a fixed (s1, ℓ1,m1), (s2, ℓ2,m2) acted upon by
spin-raising or lowering operators, times certain trigono-
metric factors. But the analysis is just the same for any
S1, S2 so we will not specify them.

The limit that we need to consider is that
only ℓ3 go to infinity. As before, we write ℓ3 = Lℓ̄3,

where ℓ̄3 ≥ c > 0. Similar to the previous cases, we
may reduce consideration to the integral

[123]0 = L
1
2

√

ℓ̄3

2π

π/2
∫

0

dθ̄ θ̄

(

θ̄

sin θ̄

)

1
2

S1S2(θ̄)Jµ3

[

(ℓ3 + 1
2 )θ̄
]

.

(H21)

Furthermore, again by arguments analogous to those in
the previous cases, one sees that

L
3
2 · [123]0 ∼w

√

ℓ̄3

2π
S1S2(0)

√
L
∫

0

dθ̄ θ̄ Jµ3
(ℓ̄3θ̄). (H22)

The large L limit of this integral must again be under-
stood in the sense of distributions in ℓ̄3. This integral
may be evaluated using formulas of [97, Sec. 1.2] or36

[78, 10.22.54, 10.2.23]. Using also that ℓ̄3 ≥ c > 0, one
finds

L
3
2 · [123]0 ∼w

µ3
√

2πℓ̄
3
2

3

S1S2(0). (H23)

which holds for µ3 > −2. The other cases can be dealt
with using the symmetries of the Bessel function. This
leads to

L
3
2 · [123] ∼w

1
√

2πℓ̄
3
2

3

[

(m3 + s3)S1S2(0) + (−1)m3+ℓ3(m3 − s3)S1S2(π)
]

[Θ(m3 + s3) − (−1)m3+s3 Θ(−m3 − s3 − 1)].

(H24)

35 Using a transformation formula for 2F1 the expression in curly
brackets {. . . } is seen to be continuous at ℓ̄2 = ℓ̄3, with a deriva-
tive diverging at most logarithmically in ℓ̄3 − ℓ̄2. Hence, the
distributional product with the P.P. term is well-defined.

36 With a Gaussian cutoff instead of the sharp cutoff at the upper
integration boundary

√
L, which one expects to give equivalent

limits.

Appendix I: Large ℓi analysis of radial integrals

In this section, we give some details concerning the
evaluation of the radial overlap integrals {123} [see
Eq. (155)]. These involve the generalized radial func-
tions (F2) Ri ≡ νi,siRNiℓimi (x̄), where the indices
si, νi, ℓi, µi, Ni for i = 1, 2, 3 are understood below but
are often suppressed to lighten the notations.

In accordance with the discussion in Sec. D 1, see Eqs.
(149), (150), of the axisymmetric (m = 0) modes, the
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index µi means

µi =

{

mi if mi = ±1,±2, . . . ,

−iε(Ni + ℓi + 1) if mi = 0.
(I1)

To simplify our formulas, we will also omit the normal-

ization constant sCNℓm in Eq. (F2), and we will cor-
respondingly denote the overlap integral (155) {123} by
{123}0, to emphasize this distinction.

Similarly to Eq. (122), we define the generalized sym-

bols P
(N1,N2,N3)
j by the triple product in the integrand

of Eq. (155),

f2R1R2R3 =

N1+N2+N3
∑

j=0

(−1)jP
(N1,N2,N3)
j

(

1 +
x̄

2

)β̂ (
x̄

2

)j+α̂

, (I2)

where

α̂ := 2 −
(

sS + νS +
ikS

2

)

β̂ := 2 − i

(

kS

2
− µS

)

,

(I3)

where again, a subscript “S” means the sum e.g.,

sS :=

3
∑

i=1

si, or kS :=

3
∑

i=1

sikNiℓimi . (I4)

The integral (155) can now be computed in the limit

ε → 0 similarly as we did in Sec. V E, which leads to

{123}0 =2α̂+1
N1+N2+N3
∑

j=0

(−1)jP
(N1,N2,N3)
j

× Γ(j + α̂+ 1)Γ(−j − α̂− β̂ − 1)

Γ(−β̂)
.

(I5)

Similarly as in the case of the normalization of the
QNMs treated in Sec. V E, the analysis of the radial
overlap coefficients (I5) appears to be difficult due
to the complicated sums appearing in the expres-

sion (I5), and implicitly in P
(N1,N2,N3)
j . However,

we have made progress when the angular momenta
ℓi are large compared to both mi, Ni for all i = 1, 2, 3.
To have a single large parameter, L, in formulas with
multiple ℓi’s, we set ℓi = Lℓ̄i as in the main text, where
ℓ̄i ≥ c, i = 1, 2, 3, where c is some strictly positive
constant.

We begin by considering the symbol s,νP
(N)
j (F3) for

large ℓ. Using Eqs. (109) and (141) for the large ℓ ex-
pansion of h+, and using Stirling’s formula [78, 5.11.7],
one has the asymptotic expansion to the needed order

s,νP
(N)
j =

2j(−N)j

j!

{

1 +
j

4ℓ
[j − 4im− 2N − 4(s+ ν) + 1]

+
j

32ℓ2

[

j3 + j2[−8im− 4N − 8(s+ ν) + 6] + 4j
[

−4m2 + 2im(2N + 4s+ 4ν − 3) + (N + 2s+ 2ν)2
]

− 16jN

+ 2
[

−8m2 + 8im(2N + 2s+ 2ν + 1) + 6N2 + 2N(8s+ 8ν + 1) + 8(s+ ν)(s + ν + 1) − 3
]

− 24(s+ ν)j − j

]}

+O(ℓ−3).

(I6)

Note that the leading order term is independent of s, ν
and m, though the subleading terms are not. From Eq.
(I6), one can obtain a corresponding asymptotic formula

for the symbols P
(N1,N2)
j which appear in Eq. (122), and

which are sums of the P
(N)
j , the leading term of which is
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e.g.,

P
(N1,N2)
j =

2jΓ(−N1 −N2 + j)

Γ(j + 1)Γ(−N1 −N2)
+O

(

L−1
)

. (I7)

Iterating this sum, we obtain the asymptotic behavior

of the symbols P
(N1,N2,N3)
j which are triple sums of the

P
(N)
j , the leading term of which is e.g.,

P
(N1,N2,N3)
j =

2jΓ(−N1 −N2 −N3 + j)

Γ(j + 1)Γ(−NS)
+O(L−1). (I8)

From the asymptotic expansion, carried out at the
needed order,

Γ(j + α̂+ 1)Γ(−j − α̂− β̂ − 1)

Γ(−β̂)
=

√
π√
ℓS

(−1)1+j2−j+ℓS+NS+(sS+νS)− 5
2 sec

[

1

2
π(ℓS + iµS +NS + 2(sS + νS))

]

×
{

1 − 15 log(2)
(

ℓ1ℓ2m
2
3 + ℓ1ℓ3m

2
2 + ℓ2ℓ3m

2
1

)

16ℓ1ℓ2ℓ3
+

2[mS − i(sS + νS − j)]2 − 2NS − 2(sS + νS) + 2j + 5

4ℓS

+
B0

32ℓ2
S

+
1

ℓS

3
∑

i=1

Bi

ℓi
+ log(2)

3
∑

i=1

15m2
i

32ℓ2
i

(

15m2
i log(2)

6
+ 1

)

+
225 log2(2)

256

(

m2
1m

2
2

ℓ1ℓ2
+
m2

1m
2
3

ℓ1ℓ3
+
m2

2m
2
3

ℓ2ℓ3

)

+
15

32ℓ2
S

(

ℓ2m
2
1

ℓ1
+
ℓ1m

2
2

ℓ2
+
ℓ3m

2
1

ℓ1
+
ℓ1m

2
3

ℓ3
+
ℓ3m

2
2

ℓ2
+
ℓ2m

2
3

ℓ3

)

}

+O(2ℓSL− 7
2 )

(I9)

where

B0 = m2
S

[

− 24
(

j2 − 2j(sS + νS) + (sS + νS)2 + sS + νS

)

+ 24j − 24NS + 67
]

+ 4
[

(sS + νS − j)2
(

j2 − 2j(sS + νS + 3) + (sS + νS)2 + 6(sS + νS) − 10
)

+ 6NS(sS + νS − j)(−j + sS + νS + 1) + 3N2
S

]

− 16im3
S(sS + νS − j) + 8imS(sS + νS − j)

[

(6 − 4j)(sS + νS) + 2(j − 3)j + 6NS + 2(sS + νS)2 − 13
]

+ 60j − 30(m1m2 +m1m3 +m2m3) + 4m4
S − 60NS − 60s+ 73

Bi = −15

64
m2

i log(2)
[

2(mS − i(sS + νS) + ij)2 − 2NS − 2(sS + νS) + 2j + 5
]

,

(I10)

obtained using Eq. (144) and k = ω̄ + m, Stirling’s for-
mula [78, 5.11.7], the Euler reflection formula [78, 5.5.3],
and the functional identity [78, 5.5.1] of the Gamma func-

tion. Using the leading large L terms in Eqs. (I6), (I9),
(109) and (141), we obtain the leading large L asymptotic
behavior of the sum in (I5) as:

N1+N2+N3
∑

j=0

(−1)jP
(N1,N2,N3)
j

Γ(j + α̂+ 1)Γ(−j − α̂− β̂ − 1)

Γ(−β̂)

= − sec

[

1

2
π(ℓS + iµS +NS + 2(sS + νS))

]

sin(πNS)2ℓS+NS+sS+νS− 5
2

NS

√
ℓSπ

+O
(

2ℓSL− 3
2

)

.

(I11)

We note that the explicit term on the right side vanishes
unless Ni = 0 for all i = 1, 2, 3, or equivalently unless

NS = 0. In the latter case, we obtain the leading large
L behaviour as

{123}NS=0
0 = −

√
π2

1
2

(ℓS−imS−2)(Lℓ̄S)− 1
2 sec

[

1

2
π(ℓS + iµS + 2(sS + νS))

]

+O
(

2
ℓS
2 L− 3

2

)

.

(I12)
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However e.g., for NS = 1, 2, to find the leading large L
behaviour it is necessary that we repeat the calculations

including next to leading terms in the large L expansions
(I6), (I9), (109) and (141). This gives the following lead-
ing large L behavior for NS = 2 at order 2ℓS/2L−3/2:

{123}NS=2
0 = −

√
π2

1
2

(ℓS−imS )(Lℓ̄S)− 3
2 sec

[

1

2
π
(

ℓS + iµS + 2(sS + νS)
)

]

FNS=2

+O
(

2
ℓS
2 L− 5

2

)

,

(I13)

where

FNS=2 :=

{

−2 Ni = Nj = 1, Nk = 0
ℓ̄j+ℓ̄k−ℓ̄i

ℓ̄i
Ni = 2, Nj = Nk = 0,

(I14)

Increasing NS further, the previously leading term in
{123}0 at order 2ℓS/2L−3/2 is now seen to vanish for
NS > 2. Thus, to find the leading term, next to next to
leading terms in the large L expansions (I6), (I9), (109)
and (141) must be used in the intermediate steps. The
leading behavior of the result is now at order 2ℓS/2L−5/2

for NS = 3, 4, and the expression for NS = 4 is, in fact,

{123}NS=4
0 = −

√
π2

1
2

(ℓS−imS+2)(Lℓ̄S)− 5
2 sec

[

1

2
π
(

ℓS + iµS + 2(sS + νS)
)

]

FNS=4

+O
(

2
ℓS
2 L− 7

2

)

(I15)

where

FNS=4 :=



























3(ℓ̄i+ℓ̄j−ℓ̄k)2

ℓ̄2
k

Ni = Nj = 0, Nk = 4

− 6(ℓ̄i+ℓ̄j−ℓ̄k)

ℓ̄k
Ni = 0, Nj = 1, Nk = 3

ℓ̄2
i −ℓ̄2

j +10ℓ̄j ℓ̄k−ℓ̄2
k

ℓ̄j ℓ̄k
Ni = 0, Nj = Nk = 2

− 2(ℓ̄i+ℓ̄j−5ℓ̄k)

ℓ̄k
Ni = Nj = 1, Nk = 2.

(I16)
The expressions for the radial overlap integrals {123} for
NS = 0, 2, 4 as given have the following similarities:

(i) In all cases the dependence on si, νi and mi is only
through the sum sS + νS and mS ,

(ii) the leading large L behavior is
(Lℓ̄S)−⌊(NS+1)/2⌋−1/2,

(iii) the remaining terms are homogeneous Laurent
polynomials in the ℓ̄i’s, where the maximum power
is ⌊NS/2⌋. We also note that terms with odd NS

have the analogous scaling in L [see (ii)]; however
the Unear

123 and V near
123 are subleading in those cases,

due to the factors L+Ni/2 in our normalization for
the cq.

This evidence, and further numerical experimentation
that we do not describe in detail here, suggests that, for
general even NS

{123}NS
0 = −

√
π2

1
2

(ℓS−imS−2+NS)(Lℓ̄S)−⌊ NS +1

2
⌋− 1

2 sec

[

1

2
π
(

ℓS + iµS + 2(sS + νS)
)

]

× FNS ({Ni, ℓ̄i}) +O
(

2
ℓS
2 L−⌊ NS +1

2
⌋− 3

2

)

,

(I17)

where FNS is a homogeneous rational function of the ℓ̄i’s
(the scaled angular momenta).

A similar analysis can be carried out, in principle, when
e.g., only ℓi, i = 2, 3 go to infinity, but ℓ1 remains finite.

To have a single large semiclassical parameter, L, we set,
as in the main text ℓi = Lℓ̄i, but now only for ℓ̄i ≥ c >
0, i = 2, 3. Then we find e.g.,
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{123}NS=0
0 = −

√
π2

1
2

(ik1+ℓ2+ℓ3−im1−imS−3)(ℓ2 + ℓ3)− 1
2 csc

[

1

2
π
(

ik1 − im1 + ℓ2 + ℓ3 + imS + 2(sS + νS)
)

]

+O
(

2
ℓ2+ℓ3

2 L− 3
2

)

.

(I18)

The formula is consistent with (I12). Indeed, for large ℓ1

we have k1 = −ih1 +m1 ∼ −i(ℓ1 + 1) +m1, whereas for
ℓ1 ≪ ℓi, (i = 2, 3) we can say that ℓS ∼ ℓ2 + ℓ3.

Finally, when only only ℓ3 = Lℓ̄3 goes to infinity, but
ℓ1, ℓ2 remain finite, we can reproduce the same analysis
as the previous cases and get e.g.,

{123}NS=0
0 =

√
π2

1
2

(ik1+ik2+ℓ3−im1−im2−imS−2)ℓ
− 1

2

3 sec

[

1

2
π
(

ik1 + ik2 − im1 − im2 + ℓ3 + imS + 2(sS + νS)
)

]

+ O
(

2
ℓ2+ℓ3

2 L− 3
2

)

.

(I19)

Appendix J: Overlap coefficients for NS > 0

For completeness, we discuss here the overlap coeffi-
cients for non-zero overtone numbers Ni. We use the
convention NS = N1 +N2 +N3. NS = 2:

V NS=2
123 = ℓ̄−1

S

ℓ̄
N1

2

1 ℓ̄
N2

2

2 ℓ̄
N3

2

3√
N1!N2!N3!

FNS=2
123 V NS=0

123 ,

UNS=2
123 = ℓ̄−1

S

ℓ̄
N1

2

1 ℓ̄
N2

2

2 ℓ̄
N3

2

3√
N1!N2!N3!

FNS=2
123 UNS=0

123 ,

(J1)

where FNS=2
123 is the homogeneous Laurent polynomial of the ℓ̄i’s defined by Eq. (I14). Again, we are discarding

consistently terms of order O(L−1/2).
NS = 4:

V NS=4
123 = ℓ̄−2

S

ℓ̄
N1

2

1 ℓ̄
N2

2

2 ℓ̄
N3

2

3√
N1!N2!N3!

FNS=4
123 V NS=0

123 ,

UNS=4
123 = ℓ̄−2

S

ℓ̄
N1

2

1 ℓ̄
N2
2

2 ℓ̄
N3

2

3√
N1!N2!N3!

FNS=4
123 UNS=0

123 ,

(J2)

where FNS=2
123 is the homogeneous Laurent polynomial of

the ℓ̄i’s defined by Eq. (I16). Again, we are discarding
consistently terms of order O(L−1/2).

The general structure of the overlap coefficients evident
in the above expressions for NS ≤ 4 depends on certain
non-trivial structural properties of the radial overlap in-
tegrals that we have found in App. I, (i)–(iii), forNS ≤ 4,

and that we conjecture to be the case generally. In partic-
ular, as seen from the above expressions, the UNS

123 , V
NS

123

are homogeneous Laurent polynomials in ℓ̄i, with no ex-
plicit dependence upon L, and this will be the case for all
NS , if the features of the radial overlap integrals in App.
I, (i)–(iii), hold true for all NS , as numerical experiments
suggest is the case. These structural properties would
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also imply that the overlap coefficients UNS
123 , V

NS
123 when

NS is odd are subleading in the large L limit, and so
could be put to zero consistently in our regime.

Appendix K: Overlap coefficients

1. (high),(low) → (high)

Here we give the explicit form of the overlap coeffi-
cients for one low ℓ and two high ℓ for vanishing overtone
numbers, i.e., Ni = 0.

In the following formulas, ℓ3 corresponds to the low ℓ

QNM. Since Unear
123 is symmetric in (23), the case when

ℓ2 is the low ℓ QNM is obtained by a relabelling. On the
other hand, V near

123 is not symmetric in (23), but the case
when ℓ2 is the low ℓ QNM gives a subleading result.
h3 ≡ 2hℓ3m3

is as given in Eq. (109) with a “+” and is
assumed to be real, otherwise h3 should be replaced by its
complex conjugate in the formula for V near

123 . The symbols
[(m1, s1, ℓ1) , (m2, s2, ℓ2)] are defined in Eq. (H19). sSℓm

are the spin-weighted spheroidals as defined in Eq. (101)
when m 6= 0, and in Eq. (D19) when m = 0. The spin
raising and lowering operators sL†

m are defined in Eqs.
(G2). As discussed more fully in App. D 1, in the case
m3 = 0, h3 should be replaced by Eq. (D17), and in
other places, every occurrence stemming from the mi = 0
radial functions should be replaced by mi → −iε(ℓi + 1).

Unear
123 = 2

3
2 π2(−1)m3δm1,m2+m3

× ℓ̄2
9
2 ℓ̄1

−3

√

ℓ̄2 + ℓ̄1

[

ev(ℓ1 + ℓ2)

sin
(

πh3

2

)

i coth(−πm1) + cos
(

πh3

2

) − iodd(ℓ1 + ℓ2)

cos
(

πh3

2

)

i coth(−πm1) − sin
(

πh3

2

)

]

×
{

1

2

[

− Θ (m1 +m2 + 2)
(

i−2Sℓ3−m3
(0) [(m1, 2, ℓ1) , (m2, 0, ℓ2)]

− (−1)ℓ1+ℓ2+m1+m2i−2Sℓ3−m3
(π) [(m1,−2, ℓ1) , (m2, 0, ℓ2)]

)

− (−1)m1+m2Θ (−m1 −m2 − 3)
(

i−2Sℓ3−m3
(0) [(−m1,−2, ℓ1) , (−m2, 0, ℓ2)]

− (−1)ℓ1+ℓ2+m1+m2i−2Sℓ3−m3
(π) [(−m1, 2, ℓ1) , (−m2, 0, ℓ2)]

)]

1
∏

j=0

(−h3 − im3 + 2 − j)

+
[

Θ (m1 +m2 + 4)
{

−i
(

−1L†
−m3 −2L†

−m3 −2Sℓ3−m3

)

(0) [(m1, 2, ℓ1) , (m2, 2, ℓ2)]

+(−1)ℓ1+ℓ2+m1+m2i
(

−1L†
−m3 −2L†

−m3 −2Sℓ3−m3

)

(π) [(m1,−2, ℓ1) , (m2,−2, ℓ2)]
}

+ (−1)m1+m2Θ (−m1 −m2 − 5)
{

−i
(

−1L†
−m3 −2L†

−m3 −2Sℓ3−m3

)

(0) [(−m1,−2, ℓ1) , (−m2,−2, ℓ2)]

+(−1)ℓ1+ℓ2+m1+m2i
(

−1L†
−m3 −2L†

−m3 −2Sℓ3−m3

)

(π) [(−m1, 2, ℓ1) , (−m2, 2, ℓ2)]
}]

+
√

2
[

Θ (m1 +m2 + 3)
{

−i
(

−2L†
−m3 −2Sℓ3−m3

)

(0) [(m1, 2, ℓ1) , (m2, 1, ℓ2)]

−(−1)ℓ1+ℓ2+m1+m2i
(

−2L†
−m3 −2Sℓ3−m3

)

(π) [(m1,−2, ℓ1) , (m2,−1, ℓ2)]
}

− (−1)m1+m2Θ (−m1 −m3 − 4)
{

−i
(

−2L†
−m3 −2Sℓ3−m3

)

(0) [(−m1,−2, ℓ1) , (−m2,−1, ℓ2)]

−(−1)ℓ1+ℓ2+m1+m2 i
(

−2L†
−m3 −2Sℓ3−m3

)

(π) [(−m1, 2, ℓ1) , (−m2, 1, ℓ2)]
}]

(−h3 − im3 + 2)

}

(K1)
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and

V near
123 = 2

3
2π2(−1)m3δm1,m2−m3

× ℓ̄2
9
2 ℓ̄1

−3

√

ℓ̄1 + ℓ̄2

[

ev(ℓ1 + ℓ2)

sin
(

πh3

2

)

i coth(−πm1) + cos
(

πh3

2

) − iodd(ℓ1 + ℓ2)

cos
(

πh3

2

)

i coth(−πm1) − sin
(

πh3

2

)

]

×
{

1

2

[

− Θ (m1 +m2 + 6)
(

− i−2Sℓ3−m3
(0) [(m1, 2, ℓ1) , (m2, 4, ℓ2)]

+ (−1)ℓ1+ℓ2+m1+m2i−2Sℓ3−m3
(π) [(m1,−2, ℓ1) , (m2,−4, ℓ2)]

)

− (−1)m1+m2Θ (−m1 −m2 − 7)
(

− i−2Sℓ3−m3
(0) [(−m1,−2, ℓ1) , (−m2,−4, ℓ2)]

+ (−1)ℓ1+ℓ2+m1+m2i−2Sℓ3−m3
(π) [(−m1, 2, ℓ1) , (−m2, 4, ℓ2)]

)]

1
∏

j=0

(−h3 + im3 + 2 − j)

−
[

Θ (m1 +m2 + 4)
{

−i
(

−1L†
−m3 −2L†

−m3 −2Sℓ3−m3

)

(0) [(m1, 2, ℓ1) , (m2, 2, ℓ2)]

+(−1)ℓ1+ℓ2+m1+m2i
(

−1L†
−m3 −2L†

−m3 −2Sℓ3−m3

)

(π) [(m1,−2, ℓ1) , (m2,−2, ℓ2)]
}

+ (−1)m1+m2Θ (−m1 −m2 − 5)
{

−i
(

−1L†
−m3 −2L†

−m3 −2Sℓ3−m3

)

(0) [(−m1,−2, ℓ1) , (−m2,−2, ℓ2)]

+(−1)ℓ1+ℓ2+m1+m2i
(

−1L†
−m3 −2L†

−m3 −2Sℓ3−m3

)

(π) [(−m1, 2, ℓ1) , (−m2, 2, ℓ2)]
}]

+
√

2
[

Θ (m1 +m2 + 5)
{

−i
(

−2L†
−m3 −2Sℓ3−m3

)

(0) [(m1, 2, ℓ1) , (m2, 3, ℓ2)]]

−(−1)ℓ1+ℓ2+m1+m2i
(

−2L†
−m3 −2Sℓ3−m3

)

(π) [(m1,−2, ℓ1) , (m2,−3, ℓ2)]
}

− (−1)m1+m2Θ (−m1 −m2 − 6)
{

−i
(

−2L†
−m3 −2Sℓ3−m3

)

(0) [(−m1,−2, ℓ1) , (−m2,−3, ℓ2)]]

−(−1)ℓ1+ℓ2+m1+m2 i
(

−2L†
−m3 −2Sℓ3−m3

)

(π) [(−m1, 2, ℓ1) , (−m2, 3, ℓ2)]
}]

(−h3 + im3 + 2)

}

.

(K2)

We note the following simplifications in these formu-
lae when all mi = 0. According to Eq. (D19), every

sSℓ0 becomes a sYℓ0, i.e. a spin weighted spherical har-
monic. These vanish at θ̄ = 0, π unless s = 0. Further-
more, by Eq. (G3b), sL†

m acts as a spin raising oper-
ator. Consequently, unless we have a term where pre-
cisely two such operators act on a −2Yℓ0, such a term

vanishes, giving rise to significant simplifications. A fur-
ther simplification arises when we look at the symbols
[(m1, s1, ℓ1) , (m2, s2, ℓ2)], defined in Eq. (H19), when
mi = 0 and s1 = s2: In this case, only the δ-function
term in Eq. (H19) survives. The resulting formulas when
all the mi’s vanish are thereby found to be:

Unear
123 = −π

2
iℓ3 [(ℓ3 − 1)ℓ3(ℓ3 + 1)(ℓ3 + 2)]

1
2 ℓ̄1odd(ℓS)

[

− 0Yℓ30(0) + (−1)ℓ1+ℓ2
0Yℓ30(π)

]

δ(ℓ̄1 − ℓ̄2) = −V near
123 . (K3)

2. (high),(high) → (low)

In the following formulas, ℓ1 corresponds to the low
ℓ, whereas ℓ2, ℓ3 are large e.g., ℓ̄2, ℓ̄3 ≥ c > 0, in terms

of the rescaled angular momenta ℓ̄ = ℓ/L. We assume
vanishing overtone numbers, i.e., Ni = 0.
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Unear
123

= δm1,m2+m3

i−ℓ2−ℓ3(−1)m1π
5
2 Γ(−1 + h1 − im1)ℓ̄2

1
2 ℓ̄3

1
2 csc

[

π
2 (h1 + ℓ2 + ℓ3 + 2im1)

]

4
√

2+2C0ℓ1m1
M

4
3 Γ(−2 − h1 − im1)Γ(h1)Γ

(

h1 + 1
2

)

[h1
2 + (−m1 + 2i)2]

√

ℓ̄2 + ℓ̄3

×
{

− (ℓ̄2 + ℓ̄3)4
[

Θ (−m2 −m3 + 2)
(

i2Sℓ1m1
(0) [(m2, 2, ℓ2) , (m3, 0, ℓ3)]

− (−1)ℓ2+ℓ3+m2+m3 i2Sℓ1m1
(π) [(m2,−2, ℓ2) , (m3, 0, ℓ3)]

)

+ (−1)m2+m3Θ (−m2 −m3 − 3)
(

i2Sℓ1m1
(0) [(−m2,−2, ℓ2) , (−m3, 0, ℓ3)]

− (−1)ℓ2+ℓ3+m2+m3 i2Sℓ1m1
(π) [(−m2, 2, ℓ2) , (m3, 0, ℓ3)]

)]

−
(

ℓ̄4
2 + 4ℓ̄3

2ℓ̄3 − 6ℓ̄2
2ℓ̄3

2 + 4ℓ̄2ℓ̄3
3 + ℓ̄3

4
)

×
[

Θ (m2 +m3 + 2)
(

i2Sℓ1m1
(0) [(m3, 1, ℓ3) , (m2, 1, ℓ2)]

− (−1)ℓ2+ℓ3+m2+m3 i2Sℓ1m1
(π) [(m2,−1, ℓ2) , (m3,−1, ℓ3)]

)

+ (−1)m2+m3Θ (−m2 −m3 − 3)
(

i2Sℓ1m1
(0) [(−m3,−1, ℓ3) , (−m2,−1, ℓ2)]

− (−1)ℓ2+ℓ3+m2+m3 i2Sℓ1m1
(π) [(−m3, 1, ℓ3) , (−m2, 1, ℓ2)]

)]

}

(K4)

and

V near
123

= δm1,m2−m3

iℓ3−ℓ2 (−1)m1+m3π
5
2 Γ(−1 + h1 − im1) csc

[

π
2 (h1 + ℓ2 + ℓ3 + 2im1)

]

ℓ̄2
9
2 ℓ̄

1
2

3

4
√

2+2C0ℓ1m1
M

4
3 Γ(−2 − h1 − im1)Γ(h1)Γ

(

h1 + 1
2

)

[h1
2 + (−m1 + 2i)2]

√

ℓ̄2 + ℓ̄3

×
{

Θ (−m3 +m2 + 2)

×
[

i2Sℓ̄1m1
(0)
(

[(−m3,−2, ℓ3) , (m2, 4, ℓ2)] + [(m2, 2, ℓ2) , (−m3, 0, ℓ3)] − 2 [(−m3,−1, ℓ3) , (m2, 3, ℓ2)]
)

− (−1)ℓ2+ℓ3+m3+m2i2Sℓ1m2
(π)
(

[(−m3, 2, ℓ3) , (m2,−4, ℓ2)] + [(m2,−2, ℓ2) , (−m3, 0, ℓ3)]

− 2 [(−m3, 1, ℓ3) , (m2,−3, ℓ2)]
)]

− (−1)m2+m3Θ (m3 −m2 − 3)

×
[

−i2Sℓ1m1
(0)
(

[(m3, 2, ℓ3) , (−m2,−4, ℓ2)] + [(−m2,−2, ℓ2) , (m3, 0, ℓ3)] − 2 [(m3, 1, ℓ3) , (−m2,−3, ℓ2)]
)

+(−1)ℓ2+ℓ3+m2+m3i2Sℓ1m1
(π)
(

[(m3,−2, ℓ3) , (−m2, 4, ℓ2)] + [(−m2, 2, ℓ2) , (m3, 0, ℓ3)]

−2 [(m3,−1, ℓ3) , (−m2, 3, ℓ2)]
)]

}

.

(K5)

Similar simplifications as before apply to the case when
all mi = 0. In fact, because the spin-weighted spheroidal
harmonics vanish in that case and it is thereby found
that Unear

123 , V near
123 = 0 to leading order in L.

3. (high),(low) → (low)

In the following formulas, ℓ1 and ℓ3 correspond to the
low ℓ’s, whereas ℓ2 is large e.g., ℓ̄2 ≥ c > 0, in terms

of the rescaled angular momenta ℓ̄ = ℓ/L. We assume
vanishing overtone numbers, i.e., Ni = 0.
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Unear
123

= −δm1,m2+m3

i−ℓ2(−1)m2π
7
4 Γ(−1 + h1 − im1) sec

[

1
2π(h1 + h3 + ℓ2 + 2im1)

]

2
3
4M

5
3 ℓ̄2

2+2C0ℓ1m1
Γ(−2 − h1 − im1)Γ(2h1)[h2

1 + (−m1 + 2i)2]

×
{ i

4

1
∏

j=0

(−h3 + im3 + 2 − j)[Θ(m2) − (−1)m2Θ(−m2 − 1)]

×
[

−m2−2Sℓ1m1 −2Sℓ3−m3
(0) + (−1)m2+ℓ2m2Sℓ1m1 −2Sℓ3−m3

(π)
]

− i√
2

(−h3 + im3 + 2)[Θ(m2 + 1) + (−1)m2Θ(−m2 − 2)]

×
[

(m2 + 1)−2Sℓ1m1

(

−2L†
−m3 −2Sℓ3−m3

)

(0) − (−1)m2+ℓ2(m2 − 1)−2Sℓ1m1

(

−2L†
−m3 −2Sℓ3−m3

)

(π)
]

− i

2
[Θ(m2 + 2) − (−1)m2Θ(−m2 − 3)]

[

(m2 + 2)−2Sℓ1m1

(

−1L†
−m3 −2L†

−m3 −2Sℓ3−m3

)

(0)

−(−1)m2+ℓ2(m2 − 2)−2Sℓ1m1

(

−1L†
−m3 −2L†

−2 −m3
Sℓ3−m3

)

(π)
] }

(K6)

and

V near
123

= −δm1,m2−m3

i−ℓ2(−1)m2π
7
4 Γ(−1 + h1 − im1) sec

[

1
2π(h1 + h3 + ℓ2 + 2im1)

]

2
3
4M

5
3 ℓ̄2

2+2C0ℓ1m1
Γ(−2 − h1 − im1)Γ(2h1)[h1

2 + (−m1 + 2i)2]

×
{ i

4

1
∏

j=0

(−h3 + im3 + 2 − j)[Θ(m2 + 4) − (−1)m2Θ(−m2 − 5)]

×
[

(m2 + 4)2Sℓ1m1 −2Sl3−m3
(0) − (−1)m2+ℓ2(m2 − 4)2Sℓ1m1 −2Sℓ3−m3

(π)
]

+
i

2
[Θ(m2 + 2) − (−1)m2Θ(−m2 − 3)]

[

(m2 + 2)2Sℓ1m1

(

−1L†
−m3 −2L†

−m3 −2Sℓ3−m3

)

(0)

− (−1)m2+ℓ2(m2 − 2)2Sℓ1m1

(

−1L†
−m3 −1L†

−m3 −2Sℓ3−m3

)

(π)
]

+
i√
2

(−h3 + im3 + 2)[Θ(m2 + 3) + (−1)m2Θ(−m2 − 4)]

×
[

−(m2 + 3)2Sℓ1m1

(

−2L†
−m3 −2Sℓ3−m3

)

(0) + (−1)m2+ℓ2 (m2 − 3)2Sℓ3m3

(

−2L†
−m3 −2Sℓ3−m3

)

(π)
] }

(K7)

Finally, we consider the case when all mi = 0. As in
the previous channel, because the spheroidal harmonics
with non-trivial spin weight vanish at 0, π in that case,
we now find Unear

123 , V near
123 = 0 to leading order in L.

Appendix L: nNHEK QNMs as SL2(R) modules

The spacetime symmetry generators of nNHEK corre-
sponding to infinitesimal SL2(R) actions are given by

Ha
0 = −(∂t̄)

a,

Ha
± =

e±t̄

√
f

[

(1 + x̄)∂t̄ ∓ f∂x̄ − ∂φ̄

]a

.
(L1)

They satisfy the sl2(R) commutation relations

[H−, H+]a = 2Ha
0 , [H0, H±]a = Ha

±. (L2)

Associated with each such Killing vector field of nNHEK
we have a corresponding GHP covariant Lie-derivative

[52] LX , X
a ∈ {Ha

0 , H
a
±}. These operators satisfy the

same commutation relations and furthermore commute
with the spin s Teukolsky operators, [sO,LX ] = 0. Hence
the complex linear span of the near zone QNM solutions
[see Eq. (103a)] to the spin s Teukolsky equations is a
module of sl2(R) under the action of the GHP covariant
Lie derivative.

We now characterize the decomposition of this module
into irreducible submodules. We first define the Casimir

Ω̂ := LH0
(LH0

− 1) − LH+
LH−

, (L3)

which is useful to classify irreducible representations.
Next, we observe that,

J LH0
J = −LH0

, J LH+
J = −LH−

, (L4)

where J is the t-φ reflection operator on GHP scalars
(C2). By the same arguments as given in [41] in the case
of Kerr, the latter relations imply that

〈〈LH0
Υ1,Υ2〉〉near = 〈〈Υ1,LH0

Υ2〉〉near,

〈〈LH+
Υ1,Υ2〉〉near = 〈〈Υ1,LH−

Υ2〉〉near,
(L5)
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for each pair of near zone modes. The near zone
mode solutions (103a) have (t̄, φ̄)-dependence sΥnear

Nℓm ∝
e−iω̄t̄+imφ̄ with ω̄ = −i(N + sh+ℓm) [see Eq. (109) for
the definition of h+ ≡ sh+ℓm], which in view of the struc-
ture (L1) of Ha

0 , H
a
± at once implies the following. For

any given (s,N, ℓ,m), sΥnear
Nℓm must be an eigenfunction

of LH0
, in fact with eigenvalue N +h. Due to the factors

of e±t̄ in Ha
±, LH±

map sΥnear
Nℓm → sΥnear

(N±1)ℓm.

Therefore, we have

LH0
ΥN = (h+ +N)ΥN , LH±

ΥN = α±
N ΥN±1, (L6)

where we omitted the reference to (s, ℓ,m) and used e.g.,
the shorthand ΥN ≡ Υnear

Nℓm (103a), and where α±
N are

constants that depend on the choice of normalization for
ΥN . E.g. in the normalization (F2) of the radial func-
tions (ν = 0) without the factor CN in that equation, we
would have

α+
N = −

√
2(h+ +N + im+ s),

α−
N = − N(N + 2h+ − 1)√

2(h+ +N − 1 + im+ s)
.

(L7)

In particular, α−
0 = 0 as must be the case since there are

no QNMs with overtone numbers N < 0. In this sense,
the complex linear span sVℓm of the near zone QNMs with
a fixed (s, ℓ,m) forms a module with raising/lowering op-
erators LH±

and lowest weight state sΥnear
0ℓm annihilated

by LH−
. We also find from Eqs. (L7)

Ω̂ = h+(h+ − 1) (L8)

for the value of the Casimir in each irreducible module

sVℓm, so h+ ≡ sh+ℓm is indeed a conformal weight in the
usual terminology. Note that the modules sVℓm are not

unitary because the bilinear form (L5) is complex linear
in each entry rather than sesquilinear positive definite,
as would be required for a unitary representation.

In the normalization Υ̂N := ΥN/
√
AN [see Eqs. (125),

(129) for |s| = 2], such that 〈〈Υ̂N , Υ̂N 〉〉near = 1, we
would instead have

α̂±
N = α±

N

√

AN±1

AN
, (L9)

whereas by Eq. (L5), we must also have α̂+
N = α̂−

N+1.

This leads to the following recursion for the AN .

AN

AN−1
=

α−
N

α+
N−1

=
N(N + 2h+ − 1)

2(h+ +N − 1 + im+ s)2
. (L10)

This could be used e.g., in order to find AN , N > 0 from
A0 (see (D9) and (D10)), and thereby obtain an analyt-
ical proof of Eqs. (125), (129) for |s| = 2. QNM mode
orthogonality in the near zone follows abstractly from the
first relation in Eqs. (L5) by the same argument as in
[41].

Appendix M: Coefficients in Eqs. (152)

In this section we give the explicit form for each term
in the overlap integrals V near

123 and Unear
123 (134) at the lead-

ing order in L, referring to the “(high),(high) → (high)”
ℓ channel. Each term factorizes into a radial and angu-
lar overlap integral as in Eq. (152). These in turn are
evaluated in our limit in Apps. I and H.

We use the definition of

−2Υ−q := ζ4J +2Υq =
f2

4M
4
3

eiωN t̄−imφ̄
+2RNℓm+2Sℓm.

(M1)
and the relations

sYℓm = (−1)s+m
−sYℓ(−m)

s,νR
∗
Nℓm = s,νRNℓ(−m)

(M2)

where the first symmetry is standard [94], and second one
can be directly read off from the definition (F1) and the
fact that h± ∈ R in our approximation regime. Again,
when an mi vanishes, we have to make the replacement
mi → −iε(ℓi+Ni+1) in the solution to the radial Teukol-
sky equation (see App. D 1) and in the quantities affected
by this change, i.e., column 2 of the following table. In
this regard, note that, for these modes, we have the re-
ality condition

(

s,νRNℓ(−iε(N+ℓ+1))

)∗
= s,νRNℓ(−iε(N+ℓ+1)) (M3)

instead of Eq. (M2). Therefore, in {123} if mi = 0, we
should take ±mi → −iε(ℓi +Ni + 1) in those quantities
for both signs.

The GHP operators appearing in the terms are related
to ladder operators as described in Apps. F, G, which
allows us to remain in the class of integrals in Apps. I
and H.
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v123{123}[123] = v123

{

(s1, ν1, N1, ℓ1, m1)(s2, ν2, N2, ℓ2, m2)(s3, ν3, N3, ℓ3, m3)
}[

(s1, ℓ1, m1)(s2, ℓ2, m2)(s3, ℓ3, m3)
]

GHP form of the overlap coefficient v123/M
5
3 Parameters of {123} Parameters of [123]

1
A∗

2
A3

∫

C

T̄ adS̄a(−2Υ−q1)Þ
2
(+2Υq2 )ð

2
(−2Υ−q∗

3
) 1

4A∗
2

A3
ℓ2

2ℓ2
3

{

(2, 0, N1, ℓ1, m1)(2, 2, N2, ℓ2, m2)(−2, 0, N3, ℓ3, −m3)
} [

(2, ℓ1, m1)(2, ℓ2, m2)(0, ℓ3, −m3)
]

−2
A∗

2
A3

∫

C

T̄ adS̄a(−2Υ−q1)ðÞ(+2Υq2 )ðÞ(−2Υ−q∗
3
) − 1

2A∗
2

A3
ℓ2

2ℓ2
3

{

(2, 0, N1, ℓ1, m1)(2, 1, N2, ℓ2, m2)(−2, 1, N3, ℓ3, −m3)
} [

(2, ℓ1, m1)(3, ℓ2, m2)(−1, ℓ3, −m3)
]

1
A∗

2
A3

∫

C

T̄ adS̄a(−2Υ−q1)ð
2
(+2Υq2 )Þ

2
(−2Υ−q∗

3
) 1

4A∗
2

A3
ℓ2

2ℓ2
3

{

(2, 0, N1, ℓ1, m1)(2, 0, N2, ℓ2, m2)(−2, 2, N3, ℓ3, −m3)
} [

(2, ℓ1, m1)(4, ℓ2, m2)(−2, ℓ3, −m3)
]

u123{123}[123] = u123

{

(s1, ν1, N1, ℓ1, m1)(s2, ν2, N2, ℓ2, m2)(s3, ν3, N3, ℓ3, m3)
}[

(s1, ℓ1, m1)(s2, ℓ2, m2)(s3, ℓ3, m3)
]∗

GHP form of the overlap coefficient u123/M
5
3 Parameters of {123} Parameters of [123]∗

1
A2A3

∫

C

T̄ adS̄a(−2Υ−q1 )Þ
2
(+2Υq2)ð

′2(−2Υ∗
−q∗

3
) (−1)m3

4A2A3
ℓ2

2ℓ2
3

{

(2, 0, N1, ℓ1, m1)(2, 2, N2, ℓ2, m2)(−2, 0, N3, ℓ3, m3)
}

[(2, ℓ1, m1)(2, ℓ2, m2)(0, ℓ3, m3)]∗

1
A2A3

∫

C

T̄ adS̄a(−2Υ−q1 )ð
′2(+2Υq2 )Þ

2
(−2Υ∗

−q∗
3
) (−1)m3

4A2A3
ℓ2

2ℓ2
3

{

(2, 0, N1, ℓ1, m1)(2, 0, N2, ℓ2, m2)(−2, 2, N3, ℓ3, m3)
}

[(2, ℓ1, m1)(0, ℓ2, m2)(2, ℓ3, m3)]∗

−2
A2A3

∫

C

T̄ adS̄a(−2Υ−q1 )ð
′
Þ(+2Υq2 )ð

′
Þ(−2Υ∗

−q∗
3
) (−1)m3

2A2A3
ℓ2

2ℓ2
3

{

(2, 0, N1, ℓ1, m1)(2, 1, N2, ℓ2, m2)(−2, 1, N3, ℓ3, m3)
}

[(2, ℓ1, m1)(1, ℓ2, m2)(1, ℓ3, m3)]∗

4
A2A3

∫

C

T̄ adS̄a(−2Υ−q1 )Þ(+2Υq2 )ð
′2 Þ(−2Υ∗

−q∗
3
) (−1)m3

A2A3
ℓ2ℓ3

3

{

(2, 0, N1, ℓ1, m1)(2, 1, N2, ℓ2, m2)(−2, 1, N3, ℓ3, m3)
}

[(2, ℓ1, m1)(2, ℓ2, m2)(0, ℓ3, m3)]∗

−8
A2A3

∫

C

T̄ adS̄a(−2Υ−q1 )ð
′
(+2Υq2 )ð

′
Þ

2
(−2Υ∗

−q∗
3
) 2(−1)m3

A2A3
ℓ2ℓ3

3

{

(2, 0, N1, ℓ1, m1)(2, 0, N2, ℓ2, m2)(−2, 2, N3, ℓ3, m3)
}

[(2, ℓ1, m1)(1, ℓ2, m2)(1, ℓ3, m3)]∗

1
A2A3

∫

C

T̄ adS̄a(−2Υ−q1 )ð
′2 Þ

3
(−2Υ∗

−q∗
2
)Þ

3
(−2Υ∗

−q∗
3
) (−1)m2+m3

4A2A3
ℓ5

2ℓ3
3

{

(2, 0, N1, ℓ1, m1)(−2, 3, ℓ2, m2)(−2, 3, ℓ3, m3)
}

[(2, ℓ1, m1)(0, ℓ2, m2)(2, ℓ3, m3)]∗

6
A2A3

∫

C

T̄ adS̄a(−2Υ−q1 )(+2Υq2 )ð
′2 Þ

2
(−2Υ∗

−q∗
3
) 3(−1)m3

2A2A3
ℓ4

3

{

(2, 0, N1, ℓ1, m1)(2, 0, ℓ2, m2)(−2, 2, ℓ3, m3)
}

[(2, ℓ1, m1)(2, ℓ2, m2)(0, ℓ3, m3)]∗

−3
2A2A3

∫

C

T̄ adS̄a(−2Υ−q1 )ð
′
Þ

3
(−2Υ∗

−q∗
2
)ð

′
Þ

3
(−2Υ∗

−q∗
3
) −3(−1)m2+m3

8A2A3
ℓ4

2ℓ4
3

{(

2, 0, N1, ℓ1, m1)(−2, 3, N2, ℓ2, m2)(−2, 3, N3, ℓ3, m3)
}

[(2, ℓ1, m1)(1, ℓ2, m2)(1, ℓ3, m3)]∗
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E. Berti, and Y. Chen, Phys. Rev. D 88, 044047 (2013).
[12] G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted

Functions and their Applications (Birkhäuser Boston,
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[29] P. Bizoń, M. Maliborski, and A. Rost-
worowski, Phys. Rev. Lett. 115, 081103 (2015),
arXiv:1506.03519 [gr-qc].

[30] G. Moschidis, Invent. Math. 231, 467 (2023),
arXiv:1812.04268 [math.AP].

[31] V. Balasubramanian, A. Buchel, S. R. Green, L. Lehner,
and S. L. Liebling, Phys. Rev. Lett. 113, 071601 (2014),
arXiv:1403.6471 [hep-th].

[32] B. Craps, O. Evnin, and J. Vanhoof,
JHEP 10 (10), 048, arXiv:1407.6273 [gr-qc].

[33] C. Kehle, Talk at “mathematical aspects of general rela-
tivity” mfo meeting id 2432 (August 2024).

[34] M. Srednicki, Quantum field theory (Cambridge Univer-
sity Press, 2007).

[35] S. Hollands and V. Toomani,
arXiv preprint arXiv:2405.18604 (2024).

[36] L. S. Kegeles and J. M. Cohen,
Physical Review D 19, 1641 (1979).

[37] P. L. Chrzanowski, Physical Review D 11, 2042 (1975).
[38] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[39] W. H. Press and S. A. Teukolsky, Apj 185, 649 (1973).
[40] M. Casals, S. Hollands, A. Pound, and V. Toomani,

arXiv preprint arXiv:2402.15468 (2024).
[41] S. R. Green, S. Hollands, L. Sberna,

V. Toomani, and P. Zimmerman, Physical Re-
view D 10.1103/PhysRevD.107.064030 (2022),
arXiv:2210.15935.

[42] J. M. Baarden, in Les Houches Summer School of Theo-
retical Physics: Black Holes (1973) pp. 241–290.

[43] V. E. Zakharov, V. S. L’vov, and G. Falkovich,
Kolmogorov spectra of turbulence I: Wave turbulence
(Springer Science & Business Media, 2012).
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