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We consider an inhomogeneous XX spin chain which interpolates between the Krawtchouk one
with perfect state transfer and the homogeneous XX chain. This model can be exploited in order
to perform state transfer of a qubit with sufficiently good fidelity. The advantage of this model
with respect to the Krawtchouk chain is that while it achieves efficient state transfer, the coupling
strengths are capped and do not become excessively large as the number of sites grows.

1. INTRODUCTION

Perfect state transfer (PST) is a protocol that performs
with probability one, the transport of a qubit in an un-
known state from one location to another. The design,
in terms of spin chains, of devices enacting PST without
error inducing external controls has been initiated some
20 years ago [3] and is still the object of much attention.
One reason for that in the context of noisy intermedi-
ate scale devices is that such quantum wires could be
used instead of swap gates in circuit routing to adapt for
instance to the constrained gate architectures currently
available (see [12] for a Reinforcement Learning approach
to such issues).

We report in this communication on how to engineer
analytically a spin chain that generates a transfer that
is not perfect but of sufficiently high fidelity and that is
free from the excessively large coupling strengths of the
lengthy chains with PST.

The basic system that is used to realize such quantum
wires is still that of an XX spin chains with nearest-
neighbor interactions. The corresponding Hamiltonian
H is given by

H =
1

2

N−1∑
l=0

Jl+1(σ
x
l σ

x
l+1 + σy

l σ
y
l+1) +

1

2

N∑
l=0

Bl(σ
z
l + 1),

(1.1)
where Jl are the constants coupling the sites l − 1 and l
and Bl are the strengths of the magnetic field at the sites
l (l = 0, 1, . . . , N). The symbols σx

l , σ
y
l , σ

z
l stand for the

Pauli matrices which act on the l-th spin.
Each spin at site l has two basic states |0⟩l (spin down)

and |1⟩l (spin up) such that

σz
l |0⟩l = −|0⟩l, σz

l |1⟩l = |1⟩l.

Hence the vector space of all the chain states is spanned
by the vectors

|n0, n1, . . . , nN ⟩ = |n0⟩0|n1⟩1 . . . |nN ⟩N ,

where each nl can take the values 0 or 1.

It is easily seen that

[H,
1

2

N∑
l=0

(σz
l + 1)] = 0,

which implies that the eigenstates of H split in subspaces
labeled by the number of spins over the chain that are up.
In order to characterize the chains with PST, it suffices to
restrict H to the subspace spanned by the states which
contain only one excitation. A natural basis for that
subspace is given by the vectors

|en⟩ = |0, 0, . . . , 1, . . . , 0⟩, n = 0, 1, 2, . . . , N,

where the only “1” occupies the n-th position. The re-
striction J of H to the 1-excitation subspace acts as fol-
lows

J |en⟩ = Jn+1|en+1⟩+Bn|en⟩+ Jn|en−1⟩. (1.2)

Note that

J0 = JN+1 = 0 (1.3)

is assumed.
The goal is to use the chain dynamics to relocate after

a time T the quantum state |ψ⟩ = α|0⟩ + β|1⟩ from the
site n = 0 to the site n = N . A simple analysis shows
that this requires the state |e0⟩ = |1, 0, 0, . . . , 0⟩ to be
unitarily evolved into the state |eN ⟩ = |0, 0, . . . , 1⟩, i.e.
to have

U(T )|e0⟩ = eiφ|eN ⟩, (1.4)

where U(t) is the evolution operator

U(t) = exp (−itH) (1.5)

and φ is a real phase parameter. Condition (1.4) defines
PST in XX spin chains.

The initial model proposed in [3] was a uniform XX
chain where all the coupling constants are the same Jl =
J, l = 1, 2, . . . , N and the magnetic fields are absent Bl =
0. This model however only yields PST for chains that
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contain only 3 or 4 spins. For longer chains there are
no times T for which relation (1.4) is verified. It was
subsequently shown [1],[7] that inhomogeneous XX spin
chains with PST for any number of sites N could be
engineered by judiciously picking the coupling constants
and the Zeeman terms in a non-uniform fashion. The
most celebrated example is that of the Krawtchouk chain
with coupling constants

Jl = K
√
l(N + 1− l), Bl = 0, l = 0, 1, 2, . . . , N (1.6)

where K is an arbitrary nonzero constant.
This model provides PST at the time T = π/K. It

is seen that this time T does not depend on the length
N of the chain. This does not violate the Lieb-Robinson
bound [13] nor special relativity for that matter because
asN grows, the Hamiltonian is not bounded and becomes
singular in view of the parabolic profile of the coupling
constants given by (1.6). One can of course rescale the
couplings by N , Jn → Jn

N , to alleviate this issue with the

result that the PST time will be T = πN
K . This fits with

the bound of the speed of PST found by Yung [21] (see
also [19]). It is appropriate to mention in this connection
the protocol developed by Xie, Tamon and Kay [20] that
allows in principle to break that bound in the speed of
PST.

Renormalizing the coupling constants byN leaves how-
ever the problem that the couplings at the extremities of
the chain will become very small as N grows meaning
that the sites towards the end of the chain are basically
uncoupled. In a photonic realization of the chain with
waveguides [14] this requires those waveguides to be very
far apart, an impractical situation.

In summary, the problem with the Krawtchouk chain
that we are stressing lies in the fact that the ratio of the
maximal value of squares of Jl(in the center of the chain)
and the minimal one (i.e. for l = 1) is

J2
max

J2
1

=
(N + 1)2

4N
(1.7)

This ratio increases linearly with large N which makes
any useful implementation of such a chain difficult or
even impossible if N attains large values.

Ways of achieving high fidelity, albeit not perfect, state
transfer while avoiding the introduction of couplings that
become very large when the size of the chain grows have
been explored through variations involving the uniform
chain, for instance by using a number of such chains [4],
or by modulating only the parameters affecting the end
sites of the chain [18], [2]. We here consider the problem
from a somewhat different angle by not insisting on the
idea that the uniform chain plays a central role but by
asking rather the question: is it possible to design an ana-
lytic chain which “interpolates” between the Krawtchouk
and homogeneous XX chain, so as to be free of the above
difficulties and to perform the required transfer to satis-
faction?

Such a chain should therefore satisfy the following con-
ditions:
(i) the transfer form |e0⟩ to |eN ⟩ is “sufficiently good”,

(ii) the ratio
J2
max

J2
min

is smaller than that for the

Krawtchouk chain in order to allow for a physically real-
istic implementation.
We take the point of view that it is not the modula-

tion of the parameters of the chain that is problematic,
but rather the fact that these specifications become “un-
bounded” in the models with PST when the size of the
chain grows. Indeed, as the realization with photonic
waveguides shows [14], it might not be much more dif-
ficult to engineer couplings with specific values at the
various sites than making them all exactly equal. In that
respect, we suggest that having analytic models is quite
useful as this entails exact formulas for the couplings; this
is a significant feature of the approach based on spectral
surgery initially mentioned in [16] that we shall use in
the following.
We shall thus indicate how to construct analytically

these interpolating chains that have explicit expressions
for couplings Jl and satisfy the conditions (i) and (ii)
stated above.
The issue of obtaining sufficiently good transfer was

also addressed in [9], where the authors introduced the
notion of “pretty good transfer” (PGT) and analyzed it
in the context of the uniform chain. However, even with
this weaker condition on the fidelity of the transfer, the
homogeneous chain still proved to have two significant
drawbacks: (i) the set of numbers N for which PGT oc-
curs is rather limited and (ii) the time T for PGT cannot
be found by an efficient algorithm.
The same idea of approximately perfect transfer

dubbed in this case “almost” perfect state transfer
(APST) was applied in [17] to non-uniform chains. In
this case, for some models the transfer times can be ex-
plicitly computed when APST or PGT happens. These
times prove finite but the corresponding models are again
plagued with the difficulties already pointed out for the
Krawtchouk chain concerning the large values of the cou-
plings.
It is hence indicated to consider a looser definition of

efficient transfer to be called good enough which is not
as stringent as APST/PGT and such that the quality of
transfer is empirically established. This leads to less re-
strictive conditions which are easier to implement in prac-
tice. With the adoption of such a definition, our goals will
be reached by using the spectral surgery method rooted
in the Darboux transformations of orthogonal polyno-
mials [6] to eliminate the most non-linear part of the
spectrum of the uniform chain and to thus determine an-
alytically the sought-out chain.
It should be mentioned that, although in a different

spirit, the approach to be followed here is not without
similarity to the one offered in [10] (see also [5]) where it
is proposed to use encoding in the outer parts of a chain
to alleviate the presence of spectral points that prevent
the standard PST. Taking as middle part the segment of
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the uniform chain that has a quasi-linear spectrum bears
a resemblance in some sense to the spectral surgery that
we shall perform on that chain.

2. TIME EVOLUTION OF A QUBIT IN XX
SPIN CHAINS

As shown in [16], the dynamics of the inhomogeneous
XX chain can be described by using the orthonormal
polynomials χn(x) arising from the recurrence relation

Jn+1χn+1(x) +Bnχn(x) + Jnχn−1(x) = xχn(x) (2.1)

with

χ−1 = 0, χ0 = 1. (2.2)

It is convenient to introduce the monic orthogonal poly-
nomials Pn(x) through

Pn(x) = J1J2 . . . Jnχn(x) = xn +O
(
xn−1

)
. (2.3)

The orthogonality relations are of the form

N∑
s=0

wsχn(xs)χm(xs) = δnm, (2.4)

or, equivalently,

N∑
s=0

wsPn(xs)Pm(xs) = hnδnm, (2.5)

where

hn = J2
1J

2
2 . . . J

2
N (2.6)

is the normalization constant. The grid points xs are
the eigenvalues of the tridiagonal matrix J with diagonal
entries Bl and off-diagonal entries Jl:

J |xs⟩ = xs|xs⟩, s = 0, 1, . . . , N. (2.7)

Note that the xs are nondegenerate provided that Jl ̸= 0
for l = 0, 1, . . . , N . The discrete weights ws are given by

ws =
hN

PN (xs)P ′
N+1(xs)

, s = 0, 1, . . . , N, (2.8)

where PN+1(x) is the characteristic polynomial of the
spectrum:

PN+1(x) = (x− x0)(x− x1) . . . (x− xN ). (2.9)

It is easy to show that the weights are positive ws > 0
and satisfy the normalization condition

N∑
s=0

ws = 1. (2.10)

In what follows we shall take the eigenvalues xs in in-
creasing order

x0 < x1 < x2 < · · · < xN . (2.11)

The eigenvectors |xs⟩ of the tridiagonal matrix J have
the expression [16]

|xs⟩ =
N∑

n=0

√
wsχn(xs)|en⟩ . (2.12)

The tridiagonal matrix is called the persymmetric if it
is symmetric under reflection with respect to the main
antidiagonal, i.e. if

JN+1−l = Jl, BN−l = Bl (2.13)

The necessary and sufficient conditions for PST are

(i) the matrix J is persymmetric

(ii) the spectrum xs satisfy the conditions

xs+1 − xs = κMs, s = 0, 1, . . . , N − 1 (2.14)

where Ms are positive odd integers and κ is an arbitrary
positive parameter. If conditions (i)-(ii) are fulfilled then
the minimal time T for which (1.4) is satisfied is given
by

T =
π

κd
, (2.15)

where d is GCD of the integers M0,M1, . . . ,MN−1.
The Krawtchouk XX chain has the linear spectrum

xs = K (s−N/2) , s = 0, 1, 2, . . . , N which ensures that
(2.14)is satisfied with Ms = 1 for all s and κ = K
and the matrix J defined by (1.6) furthermore verifies
(2.13). The corresponding polynomials Pn(x) coincide
with the Krawtchouk polynomials [1]. Considering some
other chain, assume that the matrix J is still persymmet-
ric according to (2.13) but that conditions (2.14) do not
hold. In this case PST is impossible. However, we can
suppose that the conditions (2.14)are approximately sat-
isfied. We can then expect a state transport with some
possibly “sufficient” fidelity. It is convenient to introduce
the amplitude

A(t) = ⟨eN |U(t)|e0⟩ = ⟨eN | exp (−itH) |e0⟩. (2.16)

Obviously for any time t we have the inequality

|A(t)| ≤ 1

The PST condition (1.4)is equivalent to

|A(T )| = 1 (2.17)

We say that the state transfer is “good enough” if

1− |A(T )| = δ, (2.18)

where δ is a small parameter depending on our require-
ments for experimental implementation. For example, for
practical purposes one might take δ ≤ 0.05. The smaller
this parameter δ is, the higher the fidelity will be.
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3. SURGERED HOMOGENEOUS XX CHAIN

The spectrum xs of the uniform XX chain with Bk =
0, k = 0, 1, . . . ,M and Jk = 1/2 is

xs = −2 cosω(s+ 1), s = 0, 1, . . . ,M, (3.1)

where

ω =
π

M + 2
. (3.2)

In Fig. 1 the essentially nonlinear (”red”) part of the

FIG. 1. Spectrum of the uniform XX chain. Green color
corresponds to the approximately linear part of the spectrum

spectrum prevents PST because conditions (2.14) cannot
be fulfilled. One may hence try to modify the uniform
XX chain by ”removing” the ”red” part of the spectrum.
The remaining ”green” part of the spectrum will then
approximately satisfy conditions (2.14) with xs+1−xs ≈
const.

This procedure is described in [16] and called “spec-
tral surgery”. More precisely the idea is the follow-
ing. Assume that the spectrum of the initial homoge-
neous (or inhomogeneous) XX chain with M + 1 sites
is x0 < x1 < x2 < · · · < xM−1 < xM . Let Jl be the
corresponding parameters of this chain. In what follows
we assume that magnetic fields are absent Bl = 0. Con-
sider a new inhomogeneous XX chain with M − 1 sites
and with spectrum x1 < x2 < · · · < xM−2 < xM−1.
That is, the new spectrum is obtained by removing two
boundary eigenvalues x0 and xM . We denote the new

coupling constants as J
(1)
l (the magnetic fields remain

absent B
(1)
l = 0). Repeating this procedure step-by-step

by removing the boundary eigenvalues, we arrive after j

iterations at the nonhomogeneous XX chain with spec-
trum xj < xj+1 < · · · < xM−j−1 < xM−j and with

coupling constants J
(j)
l and B

(j)
l = 0. It is assumed that

l = 0, 1, 2, . . . , N − 1, N , where N =M − 2j.
In [16] it was demonstrated that the chain with the

coupling constants J
(j)
l can be obtained from the initial

chain by the successive application of j Darboux trans-
formations of the initial Jacobi matrix J . In turn, these
transformations are well known as Christoffel transfor-
mations and are equivalent to refactorizations of the Ja-

cobi matrix. In general, the coupling constants J
(j)
l can

be expressed via the initial constants Jl and the values of
the orthogonal polynomials Pn(x) at the spectral points
x0, x1, . . . , xj−1 (see [16] for details). It is important to

stress that the Jacobi matrix J (j) remains persymmetric
for all j = 0, 1, 2, . . . . Moreover, if the initial XX chain
realizes PST, then all the derived chains with Jacobi ma-
trices J (j) will exhibit PST as well.
Let P

(j)
n (x), n = 0, 1, 2, . . . , N be the set of monic or-

thogonal polynomials corresponding to the “surgered”
Jacobi matrix J (j). For j = 0 (i.e. for the case of
the uniform XX chain), the polynomials Pn(x) coin-
cide with the Chebyshev polynomials of second type
Pn(x) = Un(x). A number of relevant things can now be

said about the associated polynomials P
(j)
n (x). In [15]

it was showed that the Darboux process for the Cheby-
shev polynomials Un(x) (which is equivalent to surger-
ing the uniform XX chain) leads to the so-called “q-
ultraspherical polynomials” which are well known for q
real[11]. In the case of interest here, the parameter q is
a root of unity

q = exp

(
2πi

M + 2

)
. (3.3)

The corresponding coupling constants are

J
(j)
l

2
= K2 (1− ql)(1− ql+2j+1)

(1− ql+j)(1− ql+j+1)
. (3.4)

The positive constant K may be taken to be arbitrary
and will depend on the concrete physical implementa-
tions.
When j = 0 we have the uniform chain, i.e. Jl = K.

For a positive integer j we have

J0 = JN+1 = 0 (3.5)

with N =M − 2j. Condition (3.5) means that the chain
consists of N + 1 sites: l = 0, 1, . . . , N .
From the results of [15] it follows on the one hand,

that the eigenvalues of the corresponding Jacobi matrix
are (putting K = 1 for simplicity)

xs = −2 cosω(s+ 1 + j), s = 0, 1, . . . , N. (3.6)

On the other hand, the one-excitation spectrum of the
uniform XX chain with M + 1 sites are given by (3.1).
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Hence the spectrum (3.6) can be obtained from the spec-
trum (3.1) by canceling j levels from the top and j levels
from the bottom. In other words, this is equivalent to
removing the “red” levels in Fig. 1. This corresponds to
the spectral surgery procedure described in [16].

Recalling (3.2), one can rewrite (3.4) in the form

J2
l = K2 sin(ωl) sin(ω(N + 1− l))

cos(ω(l −N/2)) cos(ω(l −N/2− 1))
(3.7)

which involves only the integer parameters M and N .
From Fig.2 it is seen that for a fixed numberN = 100 of

spins, the profile J2
l of the coupling constants interpolates

between the profile of the uniform XX chain when M =
N , (i.e. when the number of iterations is zero j = 0) and
that of the inhomogeneous Krawtchouk XX chain (when
M → ∞).

FIG. 2. Profiles (3.7) of the coupling constants of the surg-
ered XX chain with N = 100: the blue dash line (parabola)
corresponds to the Krawtchouk chain (M → ∞), the black
line to the uniform XX chain (j = 0) and the dots depict the
surgered chain with M = 110 in red, M = 150 in brown and
M = 200 in magenta. All plots are normalized with respect
to the value J1.

The discrete orthogonality weights are

ws(M,N) =

κ−1

j∏
k=0

sin (ω(s+ j − k + 1)) sin (ω(s+ j + k + 1))

(3.8)

where the normalization constant is

κ =
M + 2

2

j∏
k=0

cos (ωk) sin (ω(2k + 1))

2 sin (ω(k + 1))
. (3.9)

These weights are normalized

N∑
s=0

ws = 1. (3.10)

The nonnegative integer parameter j is defined as

j = (M −N)/2 = 0, 1, 2, . . . (3.11)

In particular, for N = M (i.e. for j = 0) we have the
case of homogeneous XX chain. Then

ws(M ;M) =
2

M + 2
sin2 ω(s+ 1). (3.12)

Formulas (3.8) and (3.9) follow from results of [15].
The ratio RK of the maximal and minimal values of

J2
l for the Krawtchouk chain is

RK =
J2
(N+1)/2

J2
1

=
(N + 1)2

4N
. (3.13)

For the corresponding ratio RS of the surgered XX ho-
mogeneous chain we have

RS =
J2
(N+1)/2

J2
1

=
sin2(ω(N + 1)/2) cos2(ω(N − 2)/2)

2 cos(ω/2) sin(ω) sin(ωN/2)
.

(3.14)
Fixing N and increasing M one can obtain a ratio RS

that approaches 1 (i.e. the ratio of the uniform XX
chain) which is more suitable as explained before. There
remains to determine if the fidelity of the qubit transfer
is sufficiently high.

4. FIDELITY ESTIMATION

Because the tridiagonal matrix J is persymmetric, the
amplitude A(t) (recall (2.16)) of the quantum signal at
the end of the chain can be calculated with the help of
the following formula [16]:

A(t) =

N∑
s=0

ws(−1)N+s exp (−ixst) . (4.1)

Note that for t = 0 we have

A(0) =

N∑
s=0

ws(−1)N+s = 0, (4.2)

a consequence of the properties of persymmetric matrices
[8]. Formula (4.2) means that at t = 0, the quantum
signal (qubit) is concentrated at n = 0 and that hence the
amplitude at n = N is zero. Given the explicit expression
of the weights (3.8), one can evaluate the fidelity defined
in(2.18)

δ(T ) = 1− |A(T )| (4.3)
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for different values of N,M, T . The main problem is:
find the time T such that δ(T ) has the smallest (neces-
sarily positive) value for the given parameters N and M .
Remember that smaller and smaller δ(T ) will amount
to higher and higher fidelities that can be defined by
1− δ(T ).
We present several estimates for N = 100. It is con-

venient to normalize the spectrum of the uniform XX
chain (and hence its Hamiltonian) according to

xs = −2(M + 2) cosω(s+ 1), s = 0, 1, . . . ,M (4.4)

with ω = π/(M +2). Then for sufficiently large values of
M the levels xs in the middle part of the spectrum (4.4)
have a linear behavior with xs+1−xs ≈ 2π. We know that
the PST time of the Krawtchouk chain (corresponding to
M → ∞) is TK = 1/2. We can then use this TK as a
“zeroth order approximation” for the time T which yields
a minimal value of δ(T ), i.e. we will search for a T of the
form

T = 1/2 + ε. (4.5)

Calculations with formula (4.1) give the following results

(i) for N = 100 and M = 110 we have ε = 10−2 and
δ(T ) ≈ 0.13. Such a fidelity is better than that of the
uniform XX chain but might not be “good enough” from
an experimental or engineering point of view.

(ii) for N = 100 and M = 120 we have ε = 10−2

and δ(T ) ≈ 0.05. Fidelity with such accuracy could be

considered “good enough” in implementation schemes.
Moreover, in this case the ratio RS between the maximal
and minimal values of J2

l is approximately 5, while for
the Krawtchouk chain this ratio is 25. This means that
this chain is much better behaved.

(iii) for N = 100 and M = 150 we have ε = 0.005 and
δ(T ) ≈ 0.008. This level of fidelity could be considered
in some contexts as “perfect enough”.

Finally notice that increasing N with a fixed ratio
M/N one can achieve very good fidelity. Consider, for
instance the values M = 550, N = 500. In this case
δ(T ) ≈ 0.07. For M = 1100 and N = 1000, δ(T ) ≈ 0.05
which is already “good enough” and the ratio RS = 25
is 10 times smaller than the ratio RK = 250 for the
Krawtchouk chain that generates PST. This means that
for long spin chains the surgered chain offers practical
candidates as possible registers for quantum computers
or as tools to help with circuit routing.
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