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Open quantum systems are governed by both unitary and non-unitary dynamics, with dissipa-
tion arising from the latter. Traditional quantum divergence measures, such as quantum relative
entropy, fail to account for the non-unitary oriented dissipation as the divergence is positive even
between unitarily connected states. We introduce a framework for quantifying the dissipation by
isolating the non-unitary components of quantum dynamics. We define equivalence relations among
hermitian operators through unitary transformations and characterize the resulting quotient set.
By establishing an isomorphism between this quotient set and a set of real vectors with ordered
components, we induce divergence measures that are invariant under unitary evolution, which we
refer to as the unitarily residual measures. These unitarily residual measures inherit properties
such as monotonicity and convexity and, in certain cases, correspond to classical information diver-
gences between sorted eigenvalue distributions. Our results provide a powerful tool for quantifying
dissipation in open quantum systems, advancing the understanding of quantum thermodynamics.

Introduction.— The dynamics of isolated quantum sys-
tems are governed by unitary transformations, which are
reversible and do not result in thermodynamic dissipa-
tion. In contrast, open quantum systems cannot be fully
described by unitary transformations alone [1]. Natu-
rally, the dissipation in open quantum systems is ex-
pected to arise from the non-unitary components, since
unitary operations do not contribute to dissipation. In
stochastic thermodynamics [2, 3], divergences play a cen-
tral role in quantifying dissipation. Specifically, the
Kullback-Leibler divergence quantifies entropy produc-
tion by comparing the probabilities of forward and back-
ward trajectories [2, 4, 5]. Similarly, in quantum ther-
modynamics, quantum divergences, such as quantum
relative entropy, are important to quantify dissipation
[6–8]. However, conventional quantum divergence mea-
sures remain positive even under purely unitary transfor-
mations; in other words, the divergence between states
that can be transitioned to via a unitary operator does
not vanish. Therefore, we need divergence measures
that are independent of unitary components; the di-
vergence measure between density operators connected
by a unitary transformation should be zero. Regarding
the quantum Markov process described by the Lindblad
equation, Refs. [9] and [10] introduced the total vari-
ation distance and the Kullback-Leibler divergence be-
tween sorted eigenvalues of density operators and de-
rived speed limits for the entropy production. Refer-
ence [9] showed that the Kullback-Leibler divergence be-
tween sorted eigenvalues is equal to the minimum of the
quantum relative entropy between a unitary transformed
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density operator and another density operator. Refer-
ence [11] showed that the same relation holds between
the total variation distance and the trace distance.

The main aim of this Letter is to provide a unified
framework for quantifying the effect of dissipation by
non-unitary components. We define equivalence relations
between hermitian operators via unitary transformations
and its quotient set. By identifying all quantum states
that can be transitioned to via unitary transformations
as a single point (Fig. 1), we can isolate the effects of
non-unitary (dissipative) time evolution in the quotient
set. We show that isomorphism exists between the quo-
tient set and a set of real vectors whose components are
arranged in non-descending order. We also show that
divergence measures are naturally induced in the quo-
tient set from the quantum divergences between density
operators (Fig. 1), which we refer to as unitarily resid-
ual measures. Under the assumption [cf. Eq. (21)], we
show that the unitarily residual measure inherits funda-
mental properties such as monotonicity and convexity of
the original quantum divergence. Regarding the mono-
tonicity, when the original quantum divergence is mono-
tonic with respect to completely-positive trace-preserving
(CPTP) map, the unitarily residual measure is mono-
tonic with stochastic map of eigenvalues. For certain ex-
amples, the unitarily residual measures can be written as
the classical information divergence between probability
distributions of eigenvalues arranged in non-descending
order (Table I). These results allow us to write quantum
speed limits on dissipation in semi-classical form. As
an application, we show speed limits on unitarily resid-
ual measures in general open quantum dynamics and we
show speed limits for the purity.

Equivalence classes.— Let H be a Hilbert space with
dimension n, and let L(H) be a set of linear operators
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Quantum divergence Unitarily residual measure

Bures angle

LD(ρ, σ) = arccos
(√

Fid(ρ, σ)
) Bhattacharyya (arccos) distance

L̃D([ρ], [σ]) = arccos

(∑′

i

√
piqi

)
Trace distance

T (ρ, σ) =
1

2
∥ρ− σ∥1

Total variation distance

T̃ ([ρ], [σ]) =
1

2

∑′

i

|pi − qi|

Petz-Rényi relative entropy

Dα(ρ∥σ) =
1

α− 1
ln
(
Tr
[
ρασ1−α]) Rényi divergence

D̃α([ρ] ∥ [σ]) =
1

α− 1
ln

(∑′

i

pαi q
1−α
i

)

TABLE I. Examples of quantum divergences on a set of density operators MD and corresponding unitarily residual measures
on the quotient set MD/ ∼.

∑′ denotes the sum of non-decreasing sequences {pi} and {qi}, which are eigenvalues of density
operators ρ and σ, respectively [cf. Eq. (6)].

FIG. 1. Illustration of equivalence classes, quotient set

MD/ ∼ and unitarily residual measure d̃. Time evolution of
ρ(t) comprises dissipation and σ(t) unitarily evolves by V (t).
U is an arbitrary unitary operator. Since [σ(t)] stays single
point in the quotient set, the unitarily residual measure quan-
tifies the effect of dissipation.

on H. Let M ⊂ L(H) be a set of hermitian operators.
Since the dimension of Hermitian operators are n2, we
write Mn2 when we emphasize the dimension. We define
an equivalence relation ∼ between hermitian operators
A,B ∈ M via unitary transformations:

A ∼ B if ∃U such that U†U = I, B = UAU†. (1)

Equation (1) shows that any two states connected by a
unitary transformation are considered equivalent. For
all A,B,C ∈ M, this relation satisfies the following three
properties:

A ∼ A, (2)

A ∼ B if and only if B ∼ A, (3)

If A ∼ B and B ∼ C then A ∼ C. (4)

One can easily verify these relations from the definition
in Eq. (1). The equivalence relation naturally splits M
into equivalence classes:

[A] := {B ∈ M : B ∼ A}. (5)

When A ∼ B, we write [A] = [B]. A set of equivalence
classes is called the quotient set, which is denoted by
M/ ∼.
We next show that the isomorphism exists between a

quotient set and a set of real vectors whose components
are arranged in non-descending order. For the sake of
simplicity, we introduce the notation before the discus-
sion. Let x↑ be a sorted vector which is obtained by ar-
ranging the components of x ∈ Rn in non-descending or-

der (i.e., x↑
1 ≤ x↑

2 ≤ · · · ≤ x↑
n). Let Rn↑ := {x↑ : x ∈ Rn}

be a set of sorted vectors. For a↑,b↑ ∈ Rn↑, we use
the notation

∑′
to define the sum of vectors in non-

descending order:

n∑′

i=1

F (ai, bi) :=

n∑
i=1

F (a↑i , b
↑
i ), (6)

where F is an arbitrary function. In a similar way, we
write the sum

∑′
i ai |bi⟩ ⟨bi| and

∑′
i |bi⟩ ⟨ai| for the non-

descending sequences a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤
· · · ≤ bn, where |ai⟩ denotes an eigenvector corresponds
to the the i-th eigenvalue ai (|bi⟩ is defined analogously).
Let A =

∑
i ai |ai⟩ ⟨ai| and B =

∑
i bi |bi⟩ ⟨bi| be spectral

decompositions. Since the sorted vector space Rn↑ is
closed under addition a↑ + b↑ and scalar multiplication
ka↑ for a non-negative real number k, we similarly define
addition and scalar multiplication for equivalent classes:

[A] + [B] :=

[∑′

i

(ai + bi) |ai⟩ ⟨ai|

]
, (7)

k[A] :=

[
k
∑′

i

ai |ai⟩ ⟨ai|

]
, for k ≥ 0. (8)

Note that the right-hand side of Eqs. (7) and (8) do
not depend on the choice of orthonormal basis since∑

i |ai⟩ ⟨vi| is a unitary operator for arbitrary orthonor-
mal basis {|vi⟩}. One can easily check that the definition
of Eq. (7) satisfies the fundamental properties of addition
such that [A] + [B] = [B] + [A] and [A] + ([B] + [C]) =
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([A] + [B]) + [C]. Let f : Mn2/ ∼→ Rn↑ be a map such
that

f([A]) := a↑. (9)

This map is well-defined because eigenvalues are invari-
ant under unitary transformations. For all A,B ∈ Mn2 ,
one can show that

f([A] + [B]) = f([A]) + f([B]), (10)

f(k[A]) = kf([A]), for k ≥ 0, (11)

hold and the map f is bijective. The proof of the prop-
erties of the map f is shown in Appendix A 1. This is
the first main result in this Letter. The map f preserves
the operations defined in Eqs. (7) and (8). As a result,

Mn2/ ∼ and Rn↑ share the same algebraic structure and
there exists one-to-one correspondence between the two
sets. This structural equivalence allows us to identify
these two mathematical sets as essentially the same. The
relationship between these mathematical structures can
be expressed as Mn2/ ∼∼= Rn↑. This notation indicates

that Mn2/ ∼ and Rn↑ are isomorphic, meaning that the
two sets have the same properties. By identifying the
set of equivalence classes with Rn↑, it becomes easier to
understand intuitively the structure of Mn2/ ∼.
Unitarily residual measures.— Let MD ⊂ M be a set

of density operators. Consider a real-valued function d
that satisfies the following axiom. For all ρ, σ ∈ MD,

d(ρ, σ) ≥ 0, d(ρ, σ) = 0 if and only if ρ = σ. (12)

The function d is a metric when d satisfies additional two
axioms. For all ρ, σ, χ ∈ MD,

d(ρ, σ) = d(σ, ρ), (13)

d(ρ, σ) ≤ d(ρ, χ) + d(χ, σ). (14)

Equation (14) is the triangle inequality. We impose uni-
tary invariance on d. That is, for an arbitrary unitary
operator U ,

d(UρU†, UσU†) = d(ρ, σ). (15)

For instance, the condition is satisfied by trace distance,
Bures angle and quantum relative entropy. We define a

unitarily residual measure d̃ on the quotient set MD/ ∼
as:

d̃([ρ], [σ]) := min
U†U=V †V=I

d(UρU†, V σV †)

= min
U†U=I

d(UρU†, σ) = min
U†U=I

d(ρ, UσU†), (16)

where the minimum is over all possible unitaries U and
V , and we use Eq. (15) in the last two equalities. From
Eq. (5), the unitarily residual measure satisfies Eq. (12) .

If d is a metric, then the unitarily residual measure d̃ on
the quotient set also forms a metric, which we refer to as
the unitarily residual metric. Equation (13) follows from

the symmetry of the definition Eq. (16), and Eq. (14)
follows from

d̃([ρ], [σ]) ≤ min
U†U=I

d(UρU†, χ) + min
V †V=I

d(χ, V σV †)

= d̃([ρ], [χ]) + d̃([χ], [σ]). (17)

From the definition Eq. (16), the unitarily residual mea-
sure satisfies the following property:

d̃([ρ], [σ]) ≤ d(ρ, σ). (18)

Monotonicity and convexity.— Monotonicity and con-
vexity are fundamental properties of quantum diver-
gences. For a CPTP map E(•) the monotonicity is de-
fined as

d(ρ, σ) ≥ d(E(ρ), E(σ)). (19)

The condition is satisfied by trace distance, Bures an-
gle and quantum relative entropy. For non-negative real
numbers {λi} such that

∑
i λi = 1, the convexity is de-

fined as ∑
i

λid(ρi, σ) ≥ d

(∑
i

λiρi, σ

)
. (20)

The condition is satisfied by trace distance and quan-
tum relative entropy. Letting ρ =

∑
i pi |pi⟩ ⟨pi| and

σ =
∑

j qj |qj⟩ ⟨qj |, we prove that the unitarily residual
measures inherit these properties under the additional
assumption:

d̃([ρ], [σ]) = d

(∑′

i

pi |pi⟩ ⟨pi| ,
∑′

i

qi |pi⟩ ⟨pi|

)
. (21)

Although assumption Eq. (21) seems a strong constraint,
it is a reasonable assumption since the right-hand side of
Eq.(21) does not depend on the choice of orthonormal ba-
sis from unitary invariance of d [Eq. (15)]. One can easily
verify that all examples in Table I satisfy Eq. (21). Since

Mn2/ ∼∼= Rn↑, we write p↑ instead of [
∑′

i pi |pi⟩ ⟨pi|] for
the sake of simplicity. For [ρ] = p↑, we define a stochastic

map of eigenvalues Ẽ : MD/ ∼→ M′
D/ ∼ as

Ẽ(p↑) := (Tp)
↑
, (22)

where T is a stochastic matrix (i.e,
∑

i Tij = 1 for all i
and {Tij} are all non-negative). If d satisfies monotonic-
ity Eq. (19), the unitarily residual measure is monotoni-

cally decreasing under Ẽ :

d̃([ρ], [σ]) ≥ d̃(Ẽ([ρ]), Ẽ([σ])). (23)

If d satisfies convexity Eq. (20), d̃ also satisfies convexity:

∑
i

λid̃([ρi], [σ]) ≥ d̃

(∑
i

λi[ρi], [σ]

)
, (24)
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where operations of equivalent classes are defined in
Eqs. (7) and (8). The proofs of monotonicity and convex-
ity are shown in Appendices A 2 and A3. One can prove
the convexity with respect to σ and the joint convexity
λd(ρ1, σ1) + (1− λ)d(ρ2, σ2) ≥ d(λρ1 + (1− λ)ρ2, λσ1 +
(1− λ)σ2) are also inherited. These inheritances are the
second main results of this Letter.

Examples of unitarily residual measures.— Due to the
isomorphism between [ρ] and p↑, the unitarily residual
measure is expected to correspond to the classical infor-
mation divergence between the probability distributions
p↑ and q↑. We demonstrate that this correspondence
holds in several important examples shown below.

One example of the metric d is the Bures angle, which
is widely employed in the literature [12]:

LD(ρ, σ) := arccos
[√

Fid(ρ, σ)
]
, (25)

where Fid(ρ, σ) is the quantum fidelity:

Fid(ρ, σ) :=

(
Tr

[√√
ρσ

√
ρ

])2

. (26)

The unitarily residual metric is the Bhattacharyya (arc-
cos) distance [13] between p↑ and q↑:

L̃D([ρ], [σ]) = arccos

(∑′

i

√
piqi

)
. (27)

The derivation of this relation is shown in Appendix B 1.
Another example of the metric d is the trace distance,
which is defined by

T (ρ, σ) :=
1

2
∥ρ− σ∥1, (28)

where ∥X∥1 := Tr[
√
X†X]. The unitarily residual met-

ric of the trace distance is given by the total variation
distance between p↑ and q↑:

T̃ ([ρ], [σ]) =
1

2

∑′

i

|pi − qi|. (29)

Equation. (29) was shown in Ref. [11] (see Appendix B 2).
As the last example, we consider the Petz-Rényi rela-

tive entropy [14] for α ∈ (0, 1) ∪ (1,∞):

Dα(ρ||σ) :=
1

α− 1
ln
(
Tr
[
ρασ1−α

])
. (30)

In the limit α → 1, the Petz-Rényi relative entropy
reduces to the quantum relative entropy D(ρ||σ) :=
Tr [ρ ln ρ− ρ lnσ]:

lim
α→1

Dα(ρ||σ) = D(ρ||σ). (31)

The Petz-Rényi relative entropy is not a metric since it
does not satisfy Eqs. (13) and (14). The unitarily residual

measure of the Petz-Rényi relative entropy is the Rényi
divergence [15] between p↑ and q↑:

D̃α([ρ] ∥ [σ]) =
1

α− 1
ln

(∑′

i

pαi q
1−α
i

)
. (32)

The derivation of this relation is shown in Appendix B 3.
In limit α → 1, we obtain

D̃([ρ] ∥ [σ]) := lim
α→1

D̃α([ρ] ∥ [σ]) =
∑′

i

pi ln
pi
qi
, (33)

where the right-hand side is the Kullback-Leibler diver-
gence. Equation. (33) was shown in Ref. [10]. The
Petz-Rényi relative entropy satisfies additivity Dα(ρ

A ⊗
ρB∥σA ⊗ σB) = Dα(ρ

A∥σA) +Dα(ρ
B∥σB) [14, 15]. On

the other hand, the induced unitarily residual measure
satisfies superadditivity:

D̃α([ρ
A ⊗ ρB ] ∥ [σA ⊗ σB ])

≥ D̃α([ρ
A] ∥ [σA]) + D̃α([ρ

B ] ∥ [σB ]). (34)

The derivation of this relation is shown in Appendix B 4.
The correspondences between quantum divergences and
unitarily residual measures are summarized in Table I.
The first and third columns in Table I are the third main
results in this Letter.

General open quantum dynamics.— As an example, we
demonstrate speed limits for the entropy production in
a general open quantum dynamics comprising a system
S and an environment E. The composite system S +
E evolves via a joint unitary operator U(t) which acts
on ρSE(0). Then, the density operator of the composite
system after the unitary evolution is

ρSE(t) = U(t)ρSE(0)U
†(t). (35)

Let ρS(t) := TrE [ρSE(t)] be a system density operator,
where TrE [•] denotes a partial trace with respect to the
environment. Let HS(t) and HE :=

∑
r HE,r be the

Hamiltonian of S and E, where HE,r corresponds to the
Hamiltonian of the r-th heat reservoir. It is assumed
that HE is time-independent. Let HSE(t) be the Hamil-
tonian of the system-environment interaction. The total
Hamiltonian H(t) is given by

H(t) := HS(t)⊗ IE + IS ⊗HE +HSE(t), (36)

where IS and IE represent the respective identity opera-
tors. Letting T be the time ordered product, the unitary
evolution is written as U(τ) = e−iT

∫ τ
0

H(t)dt. Here, we
adopt the convention of setting ℏ = 1. We assume that
the initial density matrix can be decomposed into the
direct product of the density matrix of S and E:

ρSE(0) = ρS(0)⊗ ρE , (37)

where ρE := ρE(0). We additionally assume that

ρE =
1

ZE(β)

∏
r

e−βrHE,r , (38)

ZE(β) := TrE

[∏
r

e−βrHE,r

]
, (39)
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where βr denotes r-th inverse temperature at time t = 0
(Boltzmann’s constant kB is set equal to 1), and ZE(β)
denotes the partition function. Under these assumptions,
the entropy production from time t = 0 to τ can be
identified as follows [6–8]:

Σ(τ) = D(ρSE(τ)∥ρS(τ)⊗ ρE). (40)

We show a speed limit for the unitarily residual measure

D̃. From Eqs. (18) and (40), we obtain

Σ(τ) ≥ D̃([ρSE(τ)] ∥ [ρS(τ)⊗ ρE ])

= D̃([ρS(0)⊗ ρE ] ∥ [ρS(τ)⊗ ρE ]), (41)

where we use [ρSE(τ)] = [ρS(0) ⊗ ρE ]. From superaddi-
tivity Eq. (34), we obtain a speed limit:

Σ(τ) ≥ D̃([ρS(0)] ∥ [ρS(τ)]). (42)

This is the forth main result in this Letter. As in
Eq. (42), eigenvalues of the density operator at time
t = 0 and t = τ are equal when the entropy pro-
duction Σ(τ) is zero. The same relation was shown in
the case of the quantum Markov process governed by
the Lindblad equation [10]. We next derive a speed
limit for the system purity PS(t) := TrS [ρ

2
S(t)]. Since

|p + q − 1| ≤ |p − 1/2| + |q − 1/2| ≤ 1 for p, q ∈ [0, 1], it
follows that

∑′

i

|pi − qi| ≥
∑′

i

|(pi + qi − 1)(pi − qi)|

≥ |
∑
i

(p2i − q2i )|. (43)

By combining this relation with the the classical

Pinsker’s inequality [16, 17] D̃([ρS(0)] ∥ [ρS(τ)]) ≥
2T̃ ([ρS(0)], [ρS(τ)])

2 and Eq. (42), we obtain a speed

limit for the purity:

Σ(τ) ≥ |PS(τ)− PS(0)|2

2
. (44)

This is the fifth main result in this Letter. Reference [18]
introduced a quantum speed limit for relative purity that
incorporates the adjoint Lindblad superoperator. Ref-
erence [19] presented a quantum speed limit for purity,
where the upper bound is determined by the norm of
the Lindblad jump operators. Our result, as shown in
Eq. (44), provides an upper bound that relies solely on
entropy production.
Here, we have presented the example of open quan-

tum dynamics, but the example of an application to non-
Hermitian dynamics is also included in Appendix C.
Conclusion.— This work provides a unified framework

for quantifying the effect of dissipation. For this purpose,
we introduced the equivalence classes of hermitian oper-
ators via unitary transformations and their quotient set.
We showed that isomorphism exists between the quotient
set and a set of real vectors whose components are in non-
descending order, and we showed that unitarily residual
measure on the quotient set are naturally induced from
quantum divergences between density operators. Under
an appropriate assumption, we showed that the unitarily
residual measures inherit the monotonicity and convex-
ity of the original quantum divergences. In some ex-
amples, the unitarily residual measures can be written
as a classical information divergence between probability
distributions of sorted eigenvalues of density operators.
As an application example, we derived speed limits on
the unitarily residual measure and purity for the entropy
production in general open quantum dynamics. Further
study of the properties of the quotient set and unitarily
residual measures would be the focus of our future work.
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Appendix A: Proofs of Properties with respect to quotient set and unitarily residual measures

1. Proof of Mn2/ ∼∼= Rn↑

Equations (10) and (11) follow from the definitions of Eqs. (7)–(9) and (a↑ + b↑)
↑
= a↑ + b↑. Next, we prove

that f is bijective by proving it is both surjective and injective. From Eq. (9), it follows that f is surjective because

f(Mn2/ ∼) = Rn↑. To establish injectivity, suppose that a↑ = b↑. This relation implies [A] = [B], since there exists a

unitary operator WBA :=
∑′

i |bi⟩ ⟨ai| such that B = WBAAW †
BA. Therefore, f is injective. Combining both results,

we proved that f is bijective.
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2. Proof of monotonicity [Eq. (23)]

From assumption Eq. (21), we obtain

d̃([ρ], [σ]) = d̃(p↑,q↑) = d

∑′

j

pj |pj⟩ ⟨pj | ,
∑′

j

qj |pj⟩ ⟨pj |

 . (A1)

Let r := Tp and s := Tq, and let Ki :=
∑

j

√
Tij |ri⟩ ⟨pj | for {|pj⟩} ∈ H and {|ri⟩} ∈ H′. We obtain∑

i Ki

(∑′
j pj |pj⟩ ⟨pj |

)
K†

i =
∑

i ri |ri⟩ ⟨ri| and
∑

i Ki

(∑′
j qj |pj⟩ ⟨pj |

)
K†

i =
∑

i si |ri⟩ ⟨ri|. Since
∑

i K
†
iKi = I,

the map EK(•) :=
∑

i Ki •K†
i is a CPTP map. Here I is an identity operator in L(H). Hence, from the definition

Eq. (22) and the monotonicity Eqs. (18) and (19), we obtain

d

∑′

j

pj |pj⟩ ⟨pj | ,
∑′

j

qj |pj⟩ ⟨pj |

 ≥ d

(∑
i

ri |ri⟩ ⟨ri| ,
∑
i

si |ri⟩ ⟨ri|

)
≥ d̃

(
r↑, s↑

)
= d̃(Ẽ([ρ]), Ẽ([σ])). (A2)

Combining this inequality with Eq. (A1), we obtain Eq. (23).

3. Proof of convexity [Eq. (24)]

Recall that d
(∑′

j pi,j |pi,j⟩ ⟨pi,j | ,
∑′

j qj |pi,j⟩ ⟨pi,j |
)

does not depend on basis from unitary invariance of d

[Eq. (15)]. Letting |pj⟩ := |p1,j⟩, from Eq. (18) and the assumption Eq. (21), we obtain

∑
i

λid̃([ρi], [σ]) =
∑
i

λid

∑′

j

pi,j |pj⟩ ⟨pj | ,
∑′

j

qj |pj⟩ ⟨pj |

 ≥ d

∑
i

λi

∑′

j

pi,j |pj⟩ ⟨pj | ,
∑′

j

qj |pj⟩ ⟨pj |


≥ d̃

(∑
i

λip
↑
i

)↑

,q↑

 = d̃

(∑
i

λip
↑
i ,q

↑

)
= d̃

(∑
i

λi[ρi], [σ]

)
, (A3)

where we use the defintions Eqs. (7) and (8) in the last equality.

Appendix B: Derivations and property of unitarily residual measure examples

1. Derivation of Eq. (27)

Let X and Y be arbitrary operators, and let si(X) be the i-th singular value of operator X. The von Neumann’s
trace inequality [20] yields

|Tr[XY ]| ≤
∑′

i

si(X)si(Y ). (B1)

The fidelity can be written as
√
Fid(ρ, σ) = Tr[|√ρ

√
σ|] =

∑
i si(

√
ρ
√
σ). Using the singular value decomposition,

there exists a unitary operator V such that Tr[|√ρ
√
σ|] = Tr[

√
ρ
√
σV ]. Setting X =

√
UρU† and Y =

√
σV in

Eq. (B1), and using si(X) =
√
pi and si(Y ) =

√
qi, we obtain√

Fid(UρU†, σ) =
∣∣∣Tr[√UρU†

√
σV ]

∣∣∣ ≤∑′

i

√
piqi. (B2)

Hence, we obtain L̃D([ρ], [σ]) ≥ arccos
(∑′

i

√
piqi

)
from Eqs. (16) and (25). Letting W :=

∑′
i |qi⟩ ⟨pi|, it follows that

W is a unitary operator such that WρW † =
∑′

i pi |qi⟩ ⟨qi|. From LD(WρW †, σ) = arccos
(∑′

i

√
piqi

)
, we obtain

Eq. (27).



7

2. Derivation of Eq. (29)

From the Mirsky inequality,

∥A−B∥1 =
∑′

i

si(A−B) ≥
∑′

i

|si(A)− si(B)| (B3)

holds for arbitrary Hermitian operator A and B [21, 22]. Since singular values of A and UAU† is equal for a unitary
operator U , from Eqs. (16) and (B3), we obtain

T̃ ([ρ], [σ]) ≥ 1

2

∑′

i

|pi − qi|. (B4)

From T (WρW †, σ) = 1/2
∑′

i |pi − qi|, we obtain Eq. (29).

3. Derivation of Eq. (32)

Let g and h be monotonically increasing functions. Letting ρ =
∑

i pi |pi⟩ ⟨pi| and σ =
∑

j qj |qj⟩ ⟨qj |, we obtain

Tr[g(UρU†)h(σ)] =
∑
i,j

g(pi)h(qj)| ⟨qj |U |pi⟩ |2 =
∑
i,j

Cijg(pi)h(qj) =: F (C), (B5)

where Cij := | ⟨qj |U |pi⟩ |2. The matrix Cij is the doubly stochastic matrix (i.e.,
∑

i Cij =
∑

j Cij = 1 and Cij ≥ 0

for all i and j). Since the function F (C) and the constraints of Cij are all linear, the objective function F (C) is
maximized when Cij = 1 or Cij = 0. By combining these conditions with constraints

∑
i Cij =

∑
j Cij = 1, we obtain

Ciπ(i) = 1 for all i. Here π is a permutation of subscripts {i}. Therefore, we obtain

Tr[g(UρU†)h(σ)] ≤
∑
i

g(pi)h(qπ(i)) ≤
∑′

i

g(pi)h(qi), (B6)

where we use ∑
i

aibi ≤
∑′

i

aibi, (B7)

for real numbers {ai} and {bi}. When α > 1, setting g(x) = xα and h(x) = −x1−α in Eq. (B6) and using Eqs. (16)
and (30), we obtain

D̃α([ρ] ∥ [σ]) ≥
1

α− 1
ln

(∑′

i

pαi q
1−α
i

)
. (B8)

When 0 < α < 1, setting g(x) = xα and h(x) = x1−α also yields Eq. (B8). From Dα(WρW †∥σ) = (α −
1)−1 ln

(∑′
i p

α
i q

1−α
i

)
, we obtain Eq. (32).

4. Proof of superadditivity [Eq. (34)]

Let {pAB
i } be non-descending eigenvalues of ρAB := ρA ⊗ ρB and let {pAj } and {pBk } be eigenvalues of ρA and

ρB , respectively. We analogously define {qAB
i }, {qAj } and {qBk } for σAB := σA ⊗ σB , σA and σB , respectively. The

definition yields pAB
i = pAj p

B
k and qAB

i = qAπ(j)q
B
π′(k). Here π and π′ are permutations of subscripts. Since the classical

Rényi divergence satisfies additivity [15], we obtain

D̃α([ρ
A ⊗ ρB ] ∥ [σA ⊗ σB ]) =

1

α− 1
ln

∑
j

(pAj )
α
(qAπ(j))

1−α

+
1

α− 1
ln

(∑
k

(pBk )
α
(qBπ′(k))

1−α

)
. (B9)



8

When α > 1, applying Eq. (B7) for ai = pi
α and bi = −qπ(i)

1−α, we obtain

D̃α([ρ
A ⊗ ρB ] ∥ [σA ⊗ σB ]) ≥ 1

α− 1
ln

(∑′

i

(pAi )
α
(qAi )

1−α

)
+

1

α− 1
ln

(∑′

i

(pBi )
α
(qBi )

1−α

)
. (B10)

Combining this relation with Eq. (32), we obtain Eq. (34). Similarly, applying Eq. (B7) for ai = pi
α and bi = qπ(i)

1−α

yields Eq. (34) when 0 < α < 1.

Appendix C: Non-Hermitian dynamics

We derive a speed limit on the induced Bures angle in the system governed by the non-Hermitian Hamiltonian H.
In general, H can be decomposed into

H(t) = H(t)− iΓ(t), (C1)

where H(t) and Γ(t) are Hermitian operators. Consider a density operator ρ(t), whose time evolution is governed by
the non-Hermitian Hamiltonian H(t):

dρ

dt
(t) = −i(H(t)ρ(t)− ρ(t)H†(t)). (C2)

Equation (C2) reduces to the von Neumann equation when H(t) is Hermitian. Let ρ̂(t) be a normalized density
operator defined as

ρ̂(t) :=
ρ(t)

Tr[ρ(t)]
. (C3)

In the following, we assume that the density operator is normalized by Eq.(C3), and we write ρ̂ as ρ to simplify the
notation. For the normalized density operator, Eq. (C2) is modified as

dρ

dt
(t) = −i(H(t)ρ(t)− ρ(t)H†(t)) + 2 ⟨Γ⟩ (t)ρ(t), (C4)

where ⟨Γ⟩ (t) := Tr[Γ(t)ρ(t)] denotes a mean of Γ(t). Letting V (t) := e−iT
∫ t
0
H(t)dt, the upper bound for the Bures

angle LD is given by ∫ τ

0

JΓK(t)dt ≥ LD(V (τ)ρ(0)V (τ)†, ρ(τ)), (C5)

where we assume
∫ τ

0
JΓK(t)dt ≤ π/2 and JΓK(t) :=

√
⟨Γ2⟩ (t)− ⟨Γ⟩ (t)2 denotes a standard deviation. The details of

the derivation are shown in the next subsection. Applying Eq. (18) for Eq. (C5), we obtain a speed limit:∫ τ

0

JΓK(t)dt ≥ L̃D([ρ(0)], [ρ(τ)]). (C6)

As in Eq. (C6), eigenvalues of the normalized density operator at time t = 0 and t = τ are nearly equal with small
standard deviation of Γ(t). Let P(t) := Tr[ρ(t)2] be a purity. Combining

∑′
i |pi− qi| =

∑′
i |
√
pi−

√
qi||

√
pi+

√
qi| ≤√∑′

i(
√
pi −

√
qi)2

∑′
i(
√
pi +

√
qi)2 ≤ 2

√
2
√
1−

∑′
i

√
piqi = 2

√
2

√
1− cos L̃D([ρ], [σ]) with Eqs. (43) and (C6), we

obtain a speed limit for the purity:

4 sin

(∫ τ

0
JΓK(t)dt
2

)
≥ |P(τ)− P(0)|. (C7)

1. Derivation of Eq. (C5)

We purify ρ(t) as follows:

|ρ(t)⟩ := e−iT
∫ t
0
H(t)dt+

∫ t
0
⟨Γ⟩(t)dt

∑
i

√
pi(0) |pi(0)⟩ ⊗ |ai⟩ , (C8)
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where {|ai⟩} are orthonormal basis in the ancilla and ρ(0) =
∑

i pi(0) |pi(0)⟩ ⟨pi(0)|. We obtain ρ(t) by taking the trace
of |ρ(t)⟩ ⟨ρ(t)| with respect to the ancilla. From Eq. (C8), letting XI(t) := V (t)†X(t)V (t) and δX(t) := X(t)−⟨X⟩ (t),
the time evolution of the purified vector in interaction picture |ρI(t)⟩ := V (t)† |ρ(t)⟩ is governed by

dt |ρI(t)⟩ = − (δΓI(t)⊗ IA) |ρI(t)⟩ , (C9)

where IA denote an identity operator of the ancilla and dt denotes d/dt. Recall that |ρI(t)⟩ is normalized, the Bures
angle between |ρI(t)⟩ and |ρI(t+ dt)⟩ can be expanded by

LD(|ρI(t)⟩ , |ρI(t+ dt)⟩) = arccos(| ⟨ρI(t+ dt)|ρI(t)⟩ |) =
√
gFS(t)dt+O(dt2), (C10)

where gFS(t) denotes the Fubini-Study metric defined by

gFS(t) := ⟨dtρI(t)|dtρI(t)⟩ − | ⟨dtρI(t)|ρI(t)⟩ |2. (C11)

Substituting Eq. (C9) into Eq. (C10) and using the triangle inequality, we obtain

LD(|ρI(0)⟩ , |ρI(τ)⟩) ≤
∫ τ

0

√
gFS(t)dt =

∫ τ

0

√
⟨ρI(t)|δΓI(t)2|ρI(t)⟩dt =

∫ τ

0

JΓK(t)dt, (C12)

where we use ⟨ρI(t)|δΓI(t)|ρI(t)⟩ = 0. From LD(|ρI(0)⟩ , |ρI(τ)⟩) = LD(V (τ) |ρ(0)⟩ , |ρ(τ)⟩), we obtain∫ τ

0

JΓK(t)dt ≥ LD(V (τ) |ρ(0)⟩ , |ρ(τ)⟩). (C13)

Using the monotonicity of the fidelity, we obtain Eq. (C5).
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