--- license: mit base_model: indobenchmark/indobert-base-p2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: general_model results: [] --- # general_model This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2535 - Accuracy: 0.9132 - F1: 0.9412 - Precision: 0.9286 - Recall: 0.9542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3084 | 1.0 | 795 | 0.2535 | 0.9132 | 0.9412 | 0.9286 | 0.9542 | | 0.2129 | 2.0 | 1590 | 0.2975 | 0.9056 | 0.9369 | 0.9131 | 0.9620 | | 0.1516 | 3.0 | 2385 | 0.3605 | 0.9043 | 0.9346 | 0.9314 | 0.9378 | | 0.095 | 4.0 | 3180 | 0.5394 | 0.8943 | 0.9301 | 0.8973 | 0.9655 | | 0.076 | 5.0 | 3975 | 0.5923 | 0.8955 | 0.9292 | 0.9182 | 0.9404 | | 0.0399 | 6.0 | 4770 | 0.5995 | 0.8899 | 0.9247 | 0.9212 | 0.9283 | | 0.0288 | 7.0 | 5565 | 0.7001 | 0.8930 | 0.9261 | 0.9326 | 0.9197 | | 0.0178 | 8.0 | 6360 | 0.7846 | 0.8930 | 0.9285 | 0.9049 | 0.9534 | | 0.0083 | 9.0 | 7155 | 0.7989 | 0.8943 | 0.9288 | 0.9125 | 0.9456 | | 0.0063 | 10.0 | 7950 | 0.8204 | 0.8924 | 0.9276 | 0.9102 | 0.9456 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0