import pytest import torch from torch.autograd import gradcheck import kornia.testing as utils # test utils from kornia.geometry import RANSAC, transform_points from kornia.geometry.epipolar import sampson_epipolar_distance from kornia.testing import assert_close class TestRANSACHomography: def test_smoke(self, device, dtype): points1 = torch.rand(4, 2, device=device, dtype=dtype) points2 = torch.rand(4, 2, device=device, dtype=dtype) ransac = RANSAC('homography').to(device=device, dtype=dtype) torch.random.manual_seed(0) H, _ = ransac(points1, points2) assert H.shape == (3, 3) @pytest.mark.xfail(reason="might slightly and randomly imprecise due to RANSAC randomness") def test_dirty_points(self, device, dtype): # generate input data torch.random.manual_seed(0) H = torch.eye(3, dtype=dtype, device=device) H[:2] = H[:2] + 0.1 * torch.rand_like(H[:2]) H[2:, :2] = H[2:, :2] + 0.001 * torch.rand_like(H[2:, :2]) points_src = 100.0 * torch.rand(1, 20, 2, device=device, dtype=dtype) points_dst = transform_points(H[None], points_src) # making last point an outlier points_dst[:, -1, :] += 800 ransac = RANSAC('homography', inl_th=0.5, max_iter=20).to(device=device, dtype=dtype) # compute transform from source to target dst_homo_src, _ = ransac(points_src[0], points_dst[0]) assert_close(transform_points(dst_homo_src[None], points_src[:, :-1]), points_dst[:, :-1], rtol=1e-3, atol=1e-3) @pytest.mark.xfail(reason="might slightly and randomly imprecise due to RANSAC randomness") @pytest.mark.parametrize("data", ["loftr_homo"], indirect=True) def test_real_clean(self, device, dtype, data): # generate input data torch.random.manual_seed(0) data_dev = utils.dict_to(data, device, dtype) homography_gt = torch.inverse(data_dev['H_gt']) homography_gt = homography_gt / homography_gt[2, 2] pts_src = data_dev['pts0'] pts_dst = data_dev['pts1'] ransac = RANSAC('homography', inl_th=0.5, max_iter=20).to(device=device, dtype=dtype) # compute transform from source to target dst_homo_src, _ = ransac(pts_src, pts_dst) assert_close(transform_points(dst_homo_src[None], pts_src[None]), pts_dst[None], rtol=1e-3, atol=1e-3) @pytest.mark.xfail(reason="might slightly and randomly imprecise due to RANSAC randomness") @pytest.mark.parametrize("data", ["loftr_homo"], indirect=True) def test_real_dirty(self, device, dtype, data): # generate input data torch.random.manual_seed(0) data_dev = utils.dict_to(data, device, dtype) homography_gt = torch.inverse(data_dev['H_gt']) homography_gt = homography_gt / homography_gt[2, 2] pts_src = data_dev['pts0'] pts_dst = data_dev['pts1'] kp1 = data_dev['loftr_outdoor_tentatives0'] kp2 = data_dev['loftr_outdoor_tentatives1'] ransac = RANSAC('homography', inl_th=3.0, max_iter=30, max_lo_iters=10).to(device=device, dtype=dtype) # compute transform from source to target dst_homo_src, _ = ransac(kp1, kp2) # Reprojection error of 5px is OK assert_close(transform_points(dst_homo_src[None], pts_src[None]), pts_dst[None], rtol=5, atol=0.15) @pytest.mark.skip(reason="find_homography_dlt is using try/except block") def test_jit(self, device, dtype): torch.random.manual_seed(0) points1 = torch.rand(4, 2, device=device, dtype=dtype) points2 = torch.rand(4, 2, device=device, dtype=dtype) model = RANSAC('homography').to(device=device, dtype=dtype) model_jit = torch.jit.script(RANSAC('homography').to(device=device, dtype=dtype)) assert_close(model(points1, points2)[0], model_jit(points1, points2)[0], rtol=1e-4, atol=1e-4) class TestRANSACFundamental: def test_smoke(self, device, dtype): torch.random.manual_seed(0) points1 = torch.rand(8, 2, device=device, dtype=dtype) points2 = torch.rand(8, 2, device=device, dtype=dtype) ransac = RANSAC('fundamental').to(device=device, dtype=dtype) Fm, _ = ransac(points1, points2) assert Fm.shape == (3, 3) @pytest.mark.xfail(reason="might slightly and randomly imprecise due to RANSAC randomness") @pytest.mark.parametrize("data", ["loftr_fund"], indirect=True) def test_real_clean(self, device, dtype, data): torch.random.manual_seed(0) # generate input data data_dev = utils.dict_to(data, device, dtype) pts_src = data_dev['pts0'] pts_dst = data_dev['pts1'] # compute transform from source to target ransac = RANSAC('fundamental', inl_th=0.5, max_iter=20, max_lo_iters=10).to(device=device, dtype=dtype) fundamental_matrix, _ = ransac(pts_src, pts_dst) gross_errors = ( sampson_epipolar_distance(pts_src[None], pts_dst[None], fundamental_matrix[None], squared=False) > 1.0 ) assert gross_errors.sum().item() == 0 @pytest.mark.xfail(reason="might fail, because out F-RANSAC is not yet 7pt") @pytest.mark.parametrize("data", ["loftr_fund"], indirect=True) def test_real_dirty(self, device, dtype, data): torch.random.manual_seed(0) # generate input data data_dev = utils.dict_to(data, device, dtype) pts_src = data_dev['pts0'] pts_dst = data_dev['pts1'] kp1 = data_dev['loftr_indoor_tentatives0'] kp2 = data_dev['loftr_indoor_tentatives1'] ransac = RANSAC('fundamental', inl_th=1.0, max_iter=20, max_lo_iters=10).to(device=device, dtype=dtype) # compute transform from source to target fundamental_matrix, _ = ransac(kp1, kp2) gross_errors = ( sampson_epipolar_distance(pts_src[None], pts_dst[None], fundamental_matrix[None], squared=False) > 10.0 ) assert gross_errors.sum().item() < 2 def test_jit(self, device, dtype): torch.random.manual_seed(0) points1 = torch.rand(8, 2, device=device, dtype=dtype) points2 = torch.rand(8, 2, device=device, dtype=dtype) model = RANSAC('fundamental').to(device=device, dtype=dtype) model_jit = torch.jit.script(model) assert_close(model(points1, points2)[0], model_jit(points1, points2)[0], rtol=1e-3, atol=1e-3) @pytest.mark.skip(reason="RANSAC is random algorithm, so Jacobian is not defined") def test_gradcheck(self, device): torch.random.manual_seed(0) points1 = torch.rand(8, 2, device=device, dtype=torch.float64, requires_grad=True) points2 = torch.rand(8, 2, device=device, dtype=torch.float64) model = RANSAC('fundamental').to(device=device, dtype=torch.float64) def gradfun(p1, p2): return model(p1, p2)[0] assert gradcheck(gradfun, (points1, points2), raise_exception=True)