import pytest import torch from torch.autograd import gradcheck import kornia import kornia.testing as utils # test utils from kornia.testing import assert_close class TestDepthTo3d: def test_smoke(self, device, dtype): depth = torch.rand(1, 1, 3, 4, device=device, dtype=dtype) camera_matrix = torch.rand(1, 3, 3, device=device, dtype=dtype) points3d = kornia.geometry.depth.depth_to_3d(depth, camera_matrix) assert points3d.shape == (1, 3, 3, 4) @pytest.mark.parametrize("batch_size", [2, 4, 5]) def test_shapes(self, batch_size, device, dtype): depth = torch.rand(batch_size, 1, 3, 4, device=device, dtype=dtype) camera_matrix = torch.rand(batch_size, 3, 3, device=device, dtype=dtype) points3d = kornia.geometry.depth.depth_to_3d(depth, camera_matrix) assert points3d.shape == (batch_size, 3, 3, 4) @pytest.mark.parametrize("batch_size", [1, 2, 4, 5]) def test_shapes_broadcast(self, batch_size, device, dtype): depth = torch.rand(batch_size, 1, 3, 4, device=device, dtype=dtype) camera_matrix = torch.rand(1, 3, 3, device=device, dtype=dtype) points3d = kornia.geometry.depth.depth_to_3d(depth, camera_matrix) assert points3d.shape == (batch_size, 3, 3, 4) def test_unproject_denormalized(self, device, dtype): # this is for default normalize_points=False depth = 2 * torch.tensor( [[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]], device=device, dtype=dtype ) camera_matrix = torch.tensor([[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) points3d_expected = torch.tensor( [ [ [[0.0, 2.0, 4.0], [0.0, 2.0, 4.0], [0.0, 2.0, 4.0], [0.0, 2.0, 4.0]], [[0.0, 0.0, 0.0], [2.0, 2.0, 2.0], [4.0, 4.0, 4.0], [6.0, 6.0, 6.0]], [[2.0, 2.0, 2.0], [2.0, 2.0, 2.0], [2.0, 2.0, 2.0], [2.0, 2.0, 2.0]], ] ], device=device, dtype=dtype, ) points3d = kornia.geometry.depth.depth_to_3d(depth, camera_matrix) # default is normalize_points=False assert_close(points3d, points3d_expected, atol=1e-4, rtol=1e-4) def test_unproject_normalized(self, device, dtype): # this is for normalize_points=True depth = 2 * torch.tensor( [[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]], device=device, dtype=dtype ) camera_matrix = torch.tensor([[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) points3d_expected = torch.tensor( [ [ [ [0.0000, 1.4142, 1.7889], [0.0000, 1.1547, 1.6330], [0.0000, 0.8165, 1.3333], [0.0000, 0.6030, 1.0690], ], [ [0.0000, 0.0000, 0.0000], [1.4142, 1.1547, 0.8165], [1.7889, 1.6330, 1.3333], [1.8974, 1.8091, 1.6036], ], [ [2.0000, 1.4142, 0.8944], [1.4142, 1.1547, 0.8165], [0.8944, 0.8165, 0.6667], [0.6325, 0.6030, 0.5345], ], ] ], device=device, dtype=dtype, ) points3d = kornia.geometry.depth.depth_to_3d(depth, camera_matrix, normalize_points=True) assert_close(points3d, points3d_expected, atol=1e-4, rtol=1e-4) def test_unproject_and_project(self, device, dtype): depth = 2 * torch.tensor( [[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]], device=device, dtype=dtype ) camera_matrix = torch.tensor([[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) points3d = kornia.geometry.depth.depth_to_3d(depth, camera_matrix) points2d = kornia.geometry.camera.project_points(points3d.permute(0, 2, 3, 1), camera_matrix[:, None, None]) points2d_expected = kornia.utils.create_meshgrid(4, 3, False, device=device).to(dtype=dtype) assert_close(points2d, points2d_expected, atol=1e-4, rtol=1e-4) def test_gradcheck(self, device, dtype): # generate input data depth = torch.rand(1, 1, 3, 4, device=device, dtype=dtype) depth = utils.tensor_to_gradcheck_var(depth) # to var camera_matrix = torch.rand(1, 3, 3, device=device, dtype=dtype) camera_matrix = utils.tensor_to_gradcheck_var(camera_matrix) # to var # evaluate function gradient assert gradcheck(kornia.geometry.depth.depth_to_3d, (depth, camera_matrix), raise_exception=True) class TestDepthToNormals: def test_smoke(self, device, dtype): depth = torch.rand(1, 1, 3, 4, device=device, dtype=dtype) camera_matrix = torch.rand(1, 3, 3, device=device, dtype=dtype) points3d = kornia.geometry.depth.depth_to_normals(depth, camera_matrix) assert points3d.shape == (1, 3, 3, 4) @pytest.mark.parametrize("batch_size", [2, 4, 5]) def test_shapes(self, batch_size, device, dtype): depth = torch.rand(batch_size, 1, 3, 4, device=device, dtype=dtype) camera_matrix = torch.rand(batch_size, 3, 3, device=device, dtype=dtype) points3d = kornia.geometry.depth.depth_to_normals(depth, camera_matrix) assert points3d.shape == (batch_size, 3, 3, 4) @pytest.mark.parametrize("batch_size", [2, 4, 5]) def test_shapes_broadcast(self, batch_size, device, dtype): depth = torch.rand(batch_size, 1, 3, 4, device=device, dtype=dtype) camera_matrix = torch.rand(1, 3, 3, device=device, dtype=dtype) points3d = kornia.geometry.depth.depth_to_normals(depth, camera_matrix) assert points3d.shape == (batch_size, 3, 3, 4) def test_simple(self, device, dtype): # this is for default normalize_points=False depth = 2 * torch.tensor( [[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]], device=device, dtype=dtype ) camera_matrix = torch.tensor([[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) normals_expected = torch.tensor( [ [ [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ] ], device=device, dtype=dtype, ) normals = kornia.geometry.depth.depth_to_normals(depth, camera_matrix) # default is normalize_points=False assert_close(normals, normals_expected, rtol=1e-3, atol=1e-3) def test_simple_normalized(self, device, dtype): # this is for default normalize_points=False depth = 2 * torch.tensor( [[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]], device=device, dtype=dtype ) camera_matrix = torch.tensor([[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) normals_expected = torch.tensor( [ [ [ [0.3432, 0.4861, 0.7628], [0.2873, 0.4260, 0.6672], [0.2284, 0.3683, 0.5596], [0.1695, 0.2980, 0.4496], ], [ [0.3432, 0.2873, 0.2363], [0.4861, 0.4260, 0.3785], [0.8079, 0.7261, 0.6529], [0.8948, 0.8237, 0.7543], ], [ [0.8743, 0.8253, 0.6019], [0.8253, 0.7981, 0.6415], [0.5432, 0.5807, 0.5105], [0.4129, 0.4824, 0.4784], ], ] ], device=device, dtype=dtype, ) normals = kornia.geometry.depth.depth_to_normals(depth, camera_matrix, normalize_points=True) assert_close(normals, normals_expected, rtol=1e-3, atol=1e-3) def test_gradcheck(self, device, dtype): # generate input data depth = torch.rand(1, 1, 3, 4, device=device, dtype=dtype) depth = utils.tensor_to_gradcheck_var(depth) # to var camera_matrix = torch.rand(1, 3, 3, device=device, dtype=dtype) camera_matrix = utils.tensor_to_gradcheck_var(camera_matrix) # to var # evaluate function gradient assert gradcheck(kornia.geometry.depth.depth_to_normals, (depth, camera_matrix), raise_exception=True) class TestWarpFrameDepth: def test_smoke(self, device, dtype): image_src = torch.rand(1, 3, 3, 4, device=device, dtype=dtype) depth_dst = torch.rand(1, 1, 3, 4, device=device, dtype=dtype) src_trans_dst = torch.rand(1, 4, 4, device=device, dtype=dtype) camera_matrix = torch.rand(1, 3, 3, device=device, dtype=dtype) image_dst = kornia.geometry.depth.warp_frame_depth(image_src, depth_dst, src_trans_dst, camera_matrix) assert image_dst.shape == (1, 3, 3, 4) @pytest.mark.parametrize("batch_size", [2, 4, 5]) @pytest.mark.parametrize("num_features", [1, 3, 5]) def test_shape(self, batch_size, num_features, device, dtype): image_src = torch.rand(batch_size, num_features, 3, 4, device=device, dtype=dtype) depth_dst = torch.rand(batch_size, 1, 3, 4, device=device, dtype=dtype) src_trans_dst = torch.rand(batch_size, 4, 4, device=device, dtype=dtype) camera_matrix = torch.rand(batch_size, 3, 3, device=device, dtype=dtype) image_dst = kornia.geometry.depth.warp_frame_depth(image_src, depth_dst, src_trans_dst, camera_matrix) assert image_dst.shape == (batch_size, num_features, 3, 4) def test_translation(self, device, dtype): # this is for normalize_points=False image_src = torch.tensor( [[[[1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]]], device=device, dtype=dtype ) depth_dst = torch.tensor( [[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]], device=device, dtype=dtype ) src_trans_dst = torch.tensor( [[[1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]], device=device, dtype=dtype, ) h, w = image_src.shape[-2:] camera_matrix = torch.tensor( [[[1.0, 0.0, w / 2], [0.0, 1.0, h / 2], [0.0, 0.0, 1.0]]], device=device, dtype=dtype ) image_dst_expected = torch.tensor( [[[[2.0, 3.0, 0.0], [2.0, 3.0, 0.0], [2.0, 3.0, 0.0], [2.0, 3.0, 0.0]]]], device=device, dtype=dtype ) image_dst = kornia.geometry.depth.warp_frame_depth( image_src, depth_dst, src_trans_dst, camera_matrix ) # default is normalize_points=False assert_close(image_dst, image_dst_expected, rtol=1e-3, atol=1e-3) def test_translation_normalized(self, device, dtype): # this is for normalize_points=True image_src = torch.tensor( [[[[1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]]], device=device, dtype=dtype ) depth_dst = torch.tensor( [[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]], device=device, dtype=dtype ) src_trans_dst = torch.tensor( [[[1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]], device=device, dtype=dtype, ) h, w = image_src.shape[-2:] camera_matrix = torch.tensor( [[[1.0, 0.0, w / 2], [0.0, 1.0, h / 2], [0.0, 0.0, 1.0]]], device=device, dtype=dtype ) image_dst_expected = torch.tensor( [ [ [ [0.9223, 0.0000, 0.0000], [2.8153, 1.5000, 0.0000], [2.8028, 2.6459, 0.0000], [2.8153, 1.5000, 0.0000], ] ] ], device=device, dtype=dtype, ) image_dst = kornia.geometry.depth.warp_frame_depth( image_src, depth_dst, src_trans_dst, camera_matrix, normalize_points=True ) assert_close(image_dst, image_dst_expected, rtol=1e-3, atol=1e-3) def test_gradcheck(self, device, dtype): image_src = torch.rand(1, 3, 3, 4, device=device, dtype=dtype) image_src = utils.tensor_to_gradcheck_var(image_src) # to var depth_dst = torch.rand(1, 1, 3, 4, device=device, dtype=dtype) depth_dst = utils.tensor_to_gradcheck_var(depth_dst) # to var src_trans_dst = torch.rand(1, 4, 4, device=device, dtype=dtype) src_trans_dst = utils.tensor_to_gradcheck_var(src_trans_dst) # to var camera_matrix = torch.rand(1, 3, 3, device=device, dtype=dtype) camera_matrix = utils.tensor_to_gradcheck_var(camera_matrix) # to var # evaluate function gradient assert gradcheck( kornia.geometry.depth.warp_frame_depth, (image_src, depth_dst, src_trans_dst, camera_matrix), raise_exception=True, )