import torch from torch.autograd import gradcheck from torch.testing import assert_allclose import kornia import kornia.testing as utils from kornia.geometry.bbox import infer_bbox_shape, infer_bbox_shape3d, transform_bbox, validate_bbox, validate_bbox3d class TestBbox2D: def test_smoke(self, device, dtype): # Sample two points of the rectangle points = torch.rand(1, 4, device=device, dtype=dtype) # Fill according missing points bbox = torch.zeros(1, 4, 2, device=device, dtype=dtype) bbox[0, 0] = points[0][:2] bbox[0, 1, 0] = points[0][2] bbox[0, 1, 1] = points[0][1] bbox[0, 2] = points[0][2:] bbox[0, 3, 0] = points[0][0] bbox[0, 3, 1] = points[0][3] # Validate assert validate_bbox(bbox) def test_bounding_boxes_dim_inferring(self, device, dtype): boxes = torch.tensor([[[1.0, 1.0], [3.0, 1.0], [3.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) h, w = infer_bbox_shape(boxes) assert (h, w) == (2, 3) def test_bounding_boxes_dim_inferring_batch(self, device, dtype): boxes = torch.tensor( [[[1.0, 1.0], [3.0, 1.0], [3.0, 2.0], [1.0, 2.0]], [[2.0, 2.0], [4.0, 2.0], [4.0, 3.0], [2.0, 3.0]]], device=device, dtype=dtype, ) h, w = infer_bbox_shape(boxes) assert (h.unique().item(), w.unique().item()) == (2, 3) def test_gradcheck(self, device, dtype): boxes = torch.tensor([[[1.0, 1.0], [3.0, 1.0], [3.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) boxes = utils.tensor_to_gradcheck_var(boxes) assert gradcheck(infer_bbox_shape, (boxes,), raise_exception=True) def test_jit(self, device, dtype): # Define script op = infer_bbox_shape op_script = torch.jit.script(op) # Define input boxes = torch.tensor([[[1.0, 1.0], [3.0, 1.0], [3.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype) # Run expected = op(boxes) actual = op_script(boxes) # Compare assert_allclose(actual, expected) class TestTransformBoxes2D: def test_transform_boxes(self, device, dtype): boxes = torch.tensor([[139.2640, 103.0150, 397.3120, 410.5225]], device=device, dtype=dtype) expected = torch.tensor([[372.7360, 103.0150, 114.6880, 410.5225]], device=device, dtype=dtype) trans_mat = torch.tensor([[[-1.0, 0.0, 512.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) out = transform_bbox(trans_mat, boxes) assert_allclose(out, expected, atol=1e-4, rtol=1e-4) def test_transform_multiple_boxes(self, device, dtype): boxes = torch.tensor( [ [139.2640, 103.0150, 397.3120, 410.5225], [1.0240, 80.5547, 512.0000, 512.0000], [165.2053, 262.1440, 510.6347, 508.9280], [119.8080, 144.2067, 257.0240, 410.1292], ], device=device, dtype=dtype, ) boxes = boxes.repeat(2, 1, 1) # 2 x 4 x 4 two images 4 boxes each expected = torch.tensor( [ [ [372.7360, 103.0150, 114.6880, 410.5225], [510.9760, 80.5547, 0.0000, 512.0000], [346.7947, 262.1440, 1.3653, 508.9280], [392.1920, 144.2067, 254.9760, 410.1292], ], [ [139.2640, 103.0150, 397.3120, 410.5225], [1.0240, 80.5547, 512.0000, 512.0000], [165.2053, 262.1440, 510.6347, 508.9280], [119.8080, 144.2067, 257.0240, 410.1292], ], ], device=device, dtype=dtype, ) trans_mat = torch.tensor( [ [[-1.0, 0.0, 512.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], ], device=device, dtype=dtype, ) out = transform_bbox(trans_mat, boxes) assert_allclose(out, expected, atol=1e-4, rtol=1e-4) def test_transform_boxes_wh(self, device, dtype): boxes = torch.tensor( [ [139.2640, 103.0150, 258.0480, 307.5075], [1.0240, 80.5547, 510.9760, 431.4453], [165.2053, 262.1440, 345.4293, 246.7840], [119.8080, 144.2067, 137.2160, 265.9225], ], device=device, dtype=dtype, ) expected = torch.tensor( [ [372.7360, 103.0150, -258.0480, 307.5075], [510.9760, 80.5547, -510.9760, 431.4453], [346.7947, 262.1440, -345.4293, 246.7840], [392.1920, 144.2067, -137.2160, 265.9225], ], device=device, dtype=dtype, ) trans_mat = torch.tensor([[[-1.0, 0.0, 512.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) out = transform_bbox(trans_mat, boxes, mode='xywh') assert_allclose(out, expected, atol=1e-4, rtol=1e-4) def test_gradcheck(self, device, dtype): boxes = torch.tensor( [ [139.2640, 103.0150, 258.0480, 307.5075], [1.0240, 80.5547, 510.9760, 431.4453], [165.2053, 262.1440, 345.4293, 246.7840], [119.8080, 144.2067, 137.2160, 265.9225], ], device=device, dtype=dtype, ) trans_mat = torch.tensor([[[-1.0, 0.0, 512.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) trans_mat = utils.tensor_to_gradcheck_var(trans_mat) boxes = utils.tensor_to_gradcheck_var(boxes) assert gradcheck(transform_bbox, (trans_mat, boxes), raise_exception=True) def test_jit(self, device, dtype): boxes = torch.tensor([[139.2640, 103.0150, 258.0480, 307.5075]], device=device, dtype=dtype) trans_mat = torch.tensor([[[-1.0, 0.0, 512.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) args = (boxes, trans_mat) op = kornia.geometry.transform_points op_jit = torch.jit.script(op) assert_allclose(op(*args), op_jit(*args)) class TestBbox3D: def test_smoke(self, device, dtype): # Sample two points of the 3d rect points = torch.rand(1, 6, device=device, dtype=dtype) # Fill according missing points bbox = torch.zeros(1, 8, 3, device=device, dtype=dtype) bbox[0, 0] = points[0][:3] bbox[0, 1, 0] = points[0][3] bbox[0, 1, 1] = points[0][1] bbox[0, 1, 2] = points[0][2] bbox[0, 2, 0] = points[0][3] bbox[0, 2, 1] = points[0][4] bbox[0, 2, 2] = points[0][2] bbox[0, 3, 0] = points[0][0] bbox[0, 3, 1] = points[0][4] bbox[0, 3, 2] = points[0][2] bbox[0, 4, 0] = points[0][0] bbox[0, 4, 1] = points[0][1] bbox[0, 4, 2] = points[0][5] bbox[0, 5, 0] = points[0][3] bbox[0, 5, 1] = points[0][1] bbox[0, 5, 2] = points[0][5] bbox[0, 6] = points[0][3:] bbox[0, 7, 0] = points[0][0] bbox[0, 7, 1] = points[0][4] bbox[0, 7, 2] = points[0][5] # Validate assert validate_bbox3d(bbox) def test_bounding_boxes_dim_inferring(self, device, dtype): boxes = torch.tensor( [ [[0, 1, 2], [10, 1, 2], [10, 21, 2], [0, 21, 2], [0, 1, 32], [10, 1, 32], [10, 21, 32], [0, 21, 32]], [[3, 4, 5], [43, 4, 5], [43, 54, 5], [3, 54, 5], [3, 4, 65], [43, 4, 65], [43, 54, 65], [3, 54, 65]], ], device=device, dtype=dtype, ) # 2x8x3 d, h, w = infer_bbox_shape3d(boxes) assert_allclose(d, torch.tensor([31.0, 61.0], device=device, dtype=dtype)) assert_allclose(h, torch.tensor([21.0, 51.0], device=device, dtype=dtype)) assert_allclose(w, torch.tensor([11.0, 41.0], device=device, dtype=dtype)) def test_gradcheck(self, device, dtype): boxes = torch.tensor( [[[0, 1, 2], [10, 1, 2], [10, 21, 2], [0, 21, 2], [0, 1, 32], [10, 1, 32], [10, 21, 32], [0, 21, 32]]], device=device, dtype=dtype, ) boxes = utils.tensor_to_gradcheck_var(boxes) assert gradcheck(infer_bbox_shape3d, (boxes,), raise_exception=True) def test_jit(self, device, dtype): # Define script op = infer_bbox_shape3d op_script = torch.jit.script(op) boxes = torch.tensor( [[[0, 0, 1], [3, 0, 1], [3, 2, 1], [0, 2, 1], [0, 0, 3], [3, 0, 3], [3, 2, 3], [0, 2, 3]]], device=device, dtype=dtype, ) # 1x8x3 actual = op_script(boxes) expected = op(boxes) assert_allclose(actual, expected)