import pytest import torch from torch.autograd import gradcheck import kornia.geometry.epipolar as epi from kornia.testing import assert_close class TestIntrinsicsLike: def test_smoke(self, device, dtype): image = torch.rand(1, 3, 4, 4, device=device, dtype=dtype) focal = torch.rand(1, device=device, dtype=dtype) camera_matrix = epi.intrinsics_like(focal, image) assert camera_matrix.shape == (1, 3, 3) @pytest.mark.parametrize("batch_size", [1, 2, 4, 9]) def test_shape(self, batch_size, device, dtype): B: int = batch_size focal: float = 100.0 image = torch.rand(B, 3, 4, 4, device=device, dtype=dtype) camera_matrix = epi.intrinsics_like(focal, image) assert camera_matrix.shape == (B, 3, 3) assert camera_matrix.device == image.device assert camera_matrix.dtype == image.dtype class TestScaleIntrinsics: def test_smoke_float(self, device, dtype): scale_factor: float = 1.0 camera_matrix = torch.rand(1, 3, 3, device=device, dtype=dtype) camera_matrix_scale = epi.scale_intrinsics(camera_matrix, scale_factor) assert camera_matrix_scale.shape == (1, 3, 3) def test_smoke_tensor(self, device, dtype): scale_factor = torch.tensor(1.0) camera_matrix = torch.rand(1, 3, 3, device=device, dtype=dtype) camera_matrix_scale = epi.scale_intrinsics(camera_matrix, scale_factor) assert camera_matrix_scale.shape == (1, 3, 3) @pytest.mark.parametrize("batch_size", [1, 2, 4, 9]) def test_shape(self, batch_size, device, dtype): B: int = batch_size scale_factor = torch.rand(B, device=device, dtype=dtype) camera_matrix = torch.rand(B, 3, 3, device=device, dtype=dtype) camera_matrix_scale = epi.scale_intrinsics(camera_matrix, scale_factor) assert camera_matrix_scale.shape == (B, 3, 3) def test_scale_double(self, device, dtype): scale_factor = torch.tensor(0.5) camera_matrix = torch.tensor( [[[100.0, 0.0, 50.0], [0.0, 100.0, 50.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype ) camera_matrix_expected = torch.tensor( [[[50.0, 0.0, 25.0], [0.0, 50.0, 25.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype ) camera_matrix_scale = epi.scale_intrinsics(camera_matrix, scale_factor) assert_close(camera_matrix_scale, camera_matrix_expected, atol=1e-4, rtol=1e-4) def test_gradcheck(self, device): scale_factor = torch.ones(1, device=device, dtype=torch.float64, requires_grad=True) camera_matrix = torch.ones(1, 3, 3, device=device, dtype=torch.float64) assert gradcheck(epi.scale_intrinsics, (camera_matrix, scale_factor), raise_exception=True) class TestProjectionFromKRt: def test_smoke(self, device, dtype): K = torch.rand(1, 3, 3, device=device, dtype=dtype) R = torch.rand(1, 3, 3, device=device, dtype=dtype) t = torch.rand(1, 3, 1, device=device, dtype=dtype) P = epi.projection_from_KRt(K, R, t) assert P.shape == (1, 3, 4) @pytest.mark.parametrize("batch_size", [1, 2, 4]) def test_shape(self, batch_size, device, dtype): B: int = batch_size K = torch.rand(B, 3, 3, device=device, dtype=dtype) R = torch.rand(B, 3, 3, device=device, dtype=dtype) t = torch.rand(B, 3, 1, device=device, dtype=dtype) P = epi.projection_from_KRt(K, R, t) assert P.shape == (B, 3, 4) def test_simple(self, device, dtype): K = torch.tensor([[[10.0, 0.0, 30.0], [0.0, 20.0, 40.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) R = torch.tensor([[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) t = torch.tensor([[[1.0], [2.0], [3.0]]], device=device, dtype=dtype) P_expected = torch.tensor( [[[10.0, 0.0, 30.0, 100.0], [0.0, 20.0, 40.0, 160.0], [0.0, 0.0, 1.0, 3.0]]], device=device, dtype=dtype ) P_estimated = epi.projection_from_KRt(K, R, t) assert_close(P_estimated, P_expected, atol=1e-4, rtol=1e-4) def test_krt_from_projection(self, device, dtype): P = torch.tensor( [[[10.0, 0.0, 30.0, 100.0], [0.0, 20.0, 40.0, 160.0], [0.0, 0.0, 1.0, 3.0]]], device=device, dtype=dtype ) K_expected = torch.tensor([[[10.0, 0.0, 30.0], [0.0, 20.0, 40.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) R_expected = torch.tensor([[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) t_expected = torch.tensor([[[1.0], [2.0], [3.0]]], device=device, dtype=dtype) K_estimated, R_estimated, t_estimated = epi.KRt_from_projection(P) assert_close(K_estimated, K_expected, atol=1e-4, rtol=1e-4) assert_close(R_estimated, R_expected, atol=1e-4, rtol=1e-4) assert_close(t_estimated, t_expected, atol=1e-4, rtol=1e-4) def test_gradcheck(self, device): K = torch.rand(1, 3, 3, device=device, dtype=torch.float64, requires_grad=True) R = torch.rand(1, 3, 3, device=device, dtype=torch.float64) t = torch.rand(1, 3, 1, device=device, dtype=torch.float64) assert gradcheck(epi.projection_from_KRt, (K, R, t), raise_exception=True) class TestProjectionsFromFundamental: def test_smoke(self, device, dtype): F_mat = torch.rand(1, 3, 3, device=device, dtype=dtype) P = epi.projections_from_fundamental(F_mat) assert P.shape == (1, 3, 4, 2) @pytest.mark.parametrize("batch_size", [1, 2, 4]) def test_shape(self, batch_size, device, dtype): B: int = batch_size F_mat = torch.rand(B, 3, 3, device=device, dtype=dtype) P = epi.projections_from_fundamental(F_mat) assert P.shape == (B, 3, 4, 2) def test_gradcheck(self, device): F_mat = torch.rand(1, 3, 3, device=device, dtype=torch.float64, requires_grad=True) assert gradcheck(epi.projections_from_fundamental, (F_mat,), raise_exception=True) class TestKRtFromProjection: def test_smoke(self, device, dtype): P = torch.randn(1, 3, 4, device=device, dtype=dtype) K, R, t = epi.KRt_from_projection(P) assert K.shape == (1, 3, 3) assert R.shape == (1, 3, 3) assert t.shape == (1, 3, 1) @pytest.mark.parametrize("batch_size", [1, 2, 4]) def test_shape(self, batch_size, device, dtype): B: int = batch_size P = torch.rand(B, 3, 4, device=device, dtype=dtype) K, R, t = epi.KRt_from_projection(P) assert K.shape == (B, 3, 3) assert R.shape == (B, 3, 3) assert t.shape == (B, 3, 1) def test_simple(self, device, dtype): P = torch.tensor( [[[308.0, 139.0, 231.0, 84.0], [481.0, 161.0, 358.0, 341.0], [384.0, 387.0, 459.0, 102.0]]], device=device, dtype=dtype, ) K_expected = torch.tensor( [[[17.006138, 122.441254, 390.211426], [0.0, 228.743622, 577.167480], [0.0, 0.0, 712.675232]]], device=device, dtype=dtype, ) R_expected = torch.tensor( [[[0.396559, 0.511023, -0.762625], [0.743249, -0.666318, -0.060006], [0.538815, 0.543024, 0.644052]]], device=device, dtype=dtype, ) t_expected = torch.tensor([[[-6.477699], [1.129624], [0.143123]]], device=device, dtype=dtype) K_estimated, R_estimated, t_estimated = epi.KRt_from_projection(P) assert_close(K_estimated, K_expected, atol=1e-4, rtol=1e-4) assert_close(R_estimated, R_expected, atol=1e-4, rtol=1e-4) assert_close(t_estimated, t_expected, atol=1e-4, rtol=1e-4) def test_projection_from_krt(self, device, dtype): K = torch.tensor( [[[17.006138, 122.441254, 390.211426], [0.0, 228.743622, 577.167480], [0.0, 0.0, 712.675232]]], device=device, dtype=dtype, ) R = torch.tensor( [[[0.396559, 0.511023, -0.762625], [0.743249, -0.666318, -0.060006], [0.538815, 0.543024, 0.644052]]], device=device, dtype=dtype, ) t = torch.tensor([[[-6.477699], [1.129624], [0.143123]]], device=device, dtype=dtype) P_expected = torch.tensor( [[[308.0, 139.0, 231.0, 84.0], [481.0, 161.0, 358.0, 341.0], [384.0, 387.0, 459.0, 102.0]]], device=device, dtype=dtype, ) P_estimated = epi.projection_from_KRt(K, R, t) assert_close(P_estimated, P_expected, atol=1e-4, rtol=1e-4) def test_gradcheck(self, device): P_mat = torch.rand(1, 3, 4, device=device, dtype=torch.float64, requires_grad=True) assert gradcheck(epi.KRt_from_projection, (P_mat,), raise_exception=True)