--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xlsr-53-ft-btb-cy results: [] --- # wav2vec2-xlsr-53-ft-btb-cy This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4086 - Wer: 0.3122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.1414 | 100 | 3.6264 | 1.0 | | No log | 0.2829 | 200 | 3.1080 | 1.0 | | No log | 0.4243 | 300 | 2.5440 | 0.9863 | | No log | 0.5658 | 400 | 1.2381 | 0.8110 | | 3.4586 | 0.7072 | 500 | 1.0036 | 0.7184 | | 3.4586 | 0.8487 | 600 | 0.8524 | 0.6379 | | 3.4586 | 0.9901 | 700 | 0.7411 | 0.5673 | | 3.4586 | 1.1315 | 800 | 0.6203 | 0.4838 | | 3.4586 | 1.2730 | 900 | 0.6017 | 0.4820 | | 0.8146 | 1.4144 | 1000 | 0.5637 | 0.4462 | | 0.8146 | 1.5559 | 1100 | 0.5381 | 0.4208 | | 0.8146 | 1.6973 | 1200 | 0.5155 | 0.4043 | | 0.8146 | 1.8388 | 1300 | 0.4858 | 0.3903 | | 0.8146 | 1.9802 | 1400 | 0.4758 | 0.3823 | | 0.6294 | 2.1216 | 1500 | 0.4604 | 0.3642 | | 0.6294 | 2.2631 | 1600 | 0.4531 | 0.3536 | | 0.6294 | 2.4045 | 1700 | 0.4435 | 0.3511 | | 0.6294 | 2.5460 | 1800 | 0.4366 | 0.3499 | | 0.6294 | 2.6874 | 1900 | 0.4309 | 0.3451 | | 0.4914 | 2.8289 | 2000 | 0.4252 | 0.3368 | | 0.4914 | 2.9703 | 2100 | 0.4218 | 0.3285 | | 0.4914 | 3.1117 | 2200 | 0.4208 | 0.3251 | | 0.4914 | 3.2532 | 2300 | 0.4144 | 0.3236 | | 0.4914 | 3.3946 | 2400 | 0.4140 | 0.3165 | | 0.4011 | 3.5361 | 2500 | 0.4133 | 0.3157 | | 0.4011 | 3.6775 | 2600 | 0.4086 | 0.3122 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1