--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xlsr-53-ft-btb-cy results: [] --- # wav2vec2-xlsr-53-ft-btb-cy This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9669 - Wer: 0.6125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:------:| | No log | 0.1414 | 100 | 3.7427 | 1.0 | | No log | 0.2829 | 200 | 2.9179 | 1.0 | | No log | 0.4243 | 300 | 2.8036 | 1.0 | | No log | 0.5658 | 400 | 1.2196 | 0.8934 | | 3.574 | 0.7072 | 500 | 0.9860 | 0.7276 | | 3.574 | 0.8487 | 600 | 0.8392 | 0.6504 | | 3.574 | 0.9901 | 700 | 0.7804 | 0.6029 | | 3.574 | 1.1315 | 800 | 0.6122 | 0.4909 | | 3.574 | 1.2730 | 900 | 0.5901 | 0.4883 | | 0.811 | 1.4144 | 1000 | 0.5500 | 0.4508 | | 0.811 | 1.5559 | 1100 | 0.5232 | 0.4142 | | 0.811 | 1.6973 | 1200 | 0.5186 | 0.4065 | | 0.811 | 1.8388 | 1300 | 0.4953 | 0.3929 | | 0.811 | 1.9802 | 1400 | 0.4880 | 0.3928 | | 0.6459 | 2.1216 | 1500 | 0.4645 | 0.3692 | | 0.6459 | 2.2631 | 1600 | 0.4666 | 0.3586 | | 0.6459 | 2.4045 | 1700 | 0.4502 | 0.3593 | | 0.6459 | 2.5460 | 1800 | 0.4528 | 0.3638 | | 0.6459 | 2.6874 | 1900 | 0.4665 | 0.3926 | | 0.5306 | 2.8289 | 2000 | 0.4329 | 0.3505 | | 0.5306 | 2.9703 | 2100 | 0.4245 | 0.3374 | | 0.5306 | 3.1117 | 2200 | 0.4377 | 0.3340 | | 0.5306 | 3.2532 | 2300 | 0.4272 | 0.3337 | | 0.5306 | 3.3946 | 2400 | 0.4335 | 0.3326 | | 0.4628 | 3.5361 | 2500 | 0.4268 | 0.3275 | | 0.4628 | 3.6775 | 2600 | 0.4502 | 0.3409 | | 0.4628 | 3.8190 | 2700 | 0.6345 | 0.4390 | | 0.4628 | 3.9604 | 2800 | 1.0203 | 0.6403 | | 0.4628 | 4.1018 | 2900 | 1.2208 | 0.7922 | | 0.8685 | 4.2433 | 3000 | 1.1018 | 0.7387 | | 0.8685 | 4.3847 | 3100 | 1.2497 | 0.8062 | | 0.8685 | 4.5262 | 3200 | 1.6165 | 0.9616 | | 0.8685 | 4.6676 | 3300 | 1.4655 | 0.9217 | | 0.8685 | 4.8091 | 3400 | 1.0288 | 0.7465 | | 1.3918 | 4.9505 | 3500 | 0.9067 | 0.5948 | | 1.3918 | 5.0919 | 3600 | 0.9486 | 0.6353 | | 1.3918 | 5.2334 | 3700 | 0.8674 | 0.5428 | | 1.3918 | 5.3748 | 3800 | 0.9403 | 0.5793 | | 1.3918 | 5.5163 | 3900 | 0.9481 | 0.5764 | | 1.0402 | 5.6577 | 4000 | 1.0176 | 0.8257 | | 1.0402 | 5.7992 | 4100 | 0.9857 | 0.6343 | | 1.0402 | 5.9406 | 4200 | 1.3289 | 0.9014 | | 1.0402 | 6.0820 | 4300 | 2.0891 | 0.7125 | | 1.0402 | 6.2235 | 4400 | 1.2563 | 0.7696 | | 1.2886 | 6.3649 | 4500 | 1.1441 | 0.6927 | | 1.2886 | 6.5064 | 4600 | 1.0626 | 0.6573 | | 1.2886 | 6.6478 | 4700 | 0.9997 | 0.6423 | | 1.2886 | 6.7893 | 4800 | 0.9814 | 0.6380 | | 1.2886 | 6.9307 | 4900 | 1.0955 | 0.7651 | | 1.0984 | 7.0721 | 5000 | 0.9213 | 0.5883 | | 1.0984 | 7.2136 | 5100 | 0.8885 | 0.5933 | | 1.0984 | 7.3550 | 5200 | 0.9001 | 0.5899 | | 1.0984 | 7.4965 | 5300 | 0.8784 | 0.5859 | | 1.0984 | 7.6379 | 5400 | 0.9072 | 0.5898 | | 0.9659 | 7.7793 | 5500 | 0.8812 | 0.5841 | | 0.9659 | 7.9208 | 5600 | 0.8912 | 0.5855 | | 0.9659 | 8.0622 | 5700 | 0.8816 | 0.5807 | | 0.9659 | 8.2037 | 5800 | 0.8914 | 0.5803 | | 0.9659 | 8.3451 | 5900 | 0.8956 | 0.5810 | | 0.9679 | 8.4866 | 6000 | 0.9162 | 0.5780 | | 0.9679 | 8.6280 | 6100 | 0.9409 | 0.5810 | | 0.9679 | 8.7694 | 6200 | 0.9371 | 0.5781 | | 0.9679 | 8.9109 | 6300 | 0.9417 | 0.5790 | | 0.9679 | 9.0523 | 6400 | 0.9664 | 0.5784 | | 1.0241 | 9.1938 | 6500 | 0.9720 | 0.5775 | | 1.0241 | 9.3352 | 6600 | 0.9841 | 0.5784 | | 1.0241 | 9.4767 | 6700 | 0.9574 | 0.5887 | | 1.0241 | 9.6181 | 6800 | 1.0725 | 0.6068 | | 1.0241 | 9.7595 | 6900 | 1.0362 | 0.6000 | | 1.0797 | 9.9010 | 7000 | 1.0117 | 0.5914 | | 1.0797 | 10.0424 | 7100 | 0.9563 | 0.6058 | | 1.0797 | 10.1839 | 7200 | 0.9664 | 0.5978 | | 1.0797 | 10.3253 | 7300 | 1.0209 | 0.6022 | | 1.0797 | 10.4668 | 7400 | 0.9849 | 0.5975 | | 1.0701 | 10.6082 | 7500 | 0.9719 | 0.6057 | | 1.0701 | 10.7496 | 7600 | 0.9670 | 0.6123 | | 1.0701 | 10.8911 | 7700 | 0.9669 | 0.6125 | | 1.0701 | 11.0325 | 7800 | 0.9669 | 0.6125 | | 1.0701 | 11.1740 | 7900 | 0.9669 | 0.6125 | | 1.0518 | 11.3154 | 8000 | 0.9669 | 0.6125 | | 1.0518 | 11.4569 | 8100 | 0.9669 | 0.6125 | | 1.0518 | 11.5983 | 8200 | 0.9669 | 0.6125 | | 1.0518 | 11.7397 | 8300 | 0.9669 | 0.6125 | | 1.0518 | 11.8812 | 8400 | 0.9669 | 0.6125 | | 1.0594 | 12.0226 | 8500 | 0.9669 | 0.6125 | | 1.0594 | 12.1641 | 8600 | 0.9669 | 0.6125 | | 1.0594 | 12.3055 | 8700 | 0.9669 | 0.6125 | | 1.0594 | 12.4470 | 8800 | 0.9669 | 0.6125 | | 1.0594 | 12.5884 | 8900 | 0.9669 | 0.6125 | | 1.0584 | 12.7298 | 9000 | 0.9669 | 0.6125 | | 1.0584 | 12.8713 | 9100 | 0.9669 | 0.6125 | | 1.0584 | 13.0127 | 9200 | 0.9669 | 0.6125 | | 1.0584 | 13.1542 | 9300 | 0.9669 | 0.6125 | | 1.0584 | 13.2956 | 9400 | 0.9669 | 0.6125 | | 1.0556 | 13.4371 | 9500 | 0.9669 | 0.6125 | | 1.0556 | 13.5785 | 9600 | 0.9669 | 0.6125 | | 1.0556 | 13.7199 | 9700 | 0.9669 | 0.6125 | | 1.0556 | 13.8614 | 9800 | 0.9669 | 0.6125 | | 1.0556 | 14.0028 | 9900 | 0.9669 | 0.6125 | | 1.0511 | 14.1443 | 10000 | 0.9669 | 0.6125 | | 1.0511 | 14.2857 | 10100 | 0.9669 | 0.6125 | | 1.0511 | 14.4272 | 10200 | 0.9669 | 0.6125 | | 1.0511 | 14.5686 | 10300 | 0.9669 | 0.6125 | | 1.0511 | 14.7100 | 10400 | 0.9669 | 0.6125 | | 1.0585 | 14.8515 | 10500 | 0.9669 | 0.6125 | | 1.0585 | 14.9929 | 10600 | 0.9669 | 0.6125 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1