--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xlsr-53-ft-btb-ccv-cy results: [] --- # wav2vec2-xlsr-53-ft-btb-ccv-cy This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6832 - Wer: 0.4641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 4.8422 | 0.0854 | 500 | 2.2692 | 0.9886 | | 1.2704 | 0.1709 | 1000 | 1.1623 | 0.7745 | | 1.0177 | 0.2563 | 1500 | 0.9608 | 0.6586 | | 0.9289 | 0.3417 | 2000 | 0.8117 | 0.6027 | | 0.855 | 0.4271 | 2500 | 0.7981 | 0.5627 | | 0.804 | 0.5126 | 3000 | 0.7293 | 0.5387 | | 0.7384 | 0.5980 | 3500 | 0.6784 | 0.5150 | | 0.7277 | 0.6834 | 4000 | 0.6553 | 0.4961 | | 0.7009 | 0.7688 | 4500 | 0.6262 | 0.4684 | | 0.6774 | 0.8543 | 5000 | 0.5955 | 0.4525 | | 0.6427 | 0.9397 | 5500 | 0.5997 | 0.4741 | | 0.6224 | 1.0251 | 6000 | 0.5653 | 0.4310 | | 0.5507 | 1.1105 | 6500 | 0.5521 | 0.4173 | | 0.6425 | 1.1960 | 7000 | 0.9010 | 0.5927 | | 0.7218 | 1.2814 | 7500 | 0.7136 | 0.5011 | | 0.8592 | 1.3668 | 8000 | 0.8863 | 0.6393 | | 0.8668 | 1.4522 | 8500 | 0.7689 | 0.5330 | | 0.7688 | 1.5377 | 9000 | 0.7101 | 0.4776 | | 0.688 | 1.6231 | 9500 | 0.6742 | 0.4661 | | 0.7079 | 1.7085 | 10000 | 0.6832 | 0.4641 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1