from transformers import AutoTokenizer, AutoModel import torch import torchvision.transforms as T from PIL import Image from io import BytesIO import requests from torchvision.transforms.functional import InterpolationMode class EndpointHandler(): def __init__(self, path): # If you have an 80G A100 GPU, you can put the entire model on a single GPU. self.model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True).eval().cuda() self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) self.IMAGENET_MEAN = (0.485, 0.456, 0.406) self.IMAGENET_STD = (0.229, 0.224, 0.225) def __call__(self, data): inputs = data.pop("inputs", data) image_url = inputs.get("image_url") prompt = inputs.get("prompt") # set the max number of tiles in `max_num` pixel_values = self.load_image(image_url, max_num=6).to(torch.bfloat16).cuda() generation_config = dict( num_beams=1, max_new_tokens=1000, do_sample=False, ) # single-round single-image conversation response = self.model.chat(self.tokenizer, pixel_values, prompt, generation_config) return {"response": response} def load_image(self, image_file, input_size=448, max_num=6): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert('RGB') transform = self.build_transform(input_size=input_size) images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values def build_transform(self, input_size): MEAN, STD = self.IMAGENET_MEAN, self.IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = self.find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio