{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b098b3c8c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700234636786281876, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2pPb47Pc28BhfqOuqvcznJxDw+/SwkugAAgD8AAIA/K+uivvxPfT79CvA9os2jvojqY71UGo28AAAAAAAAAADWQok+NrW6PtiVzTy72OO++qQ0PmgCe70AAAAAAAAAAAYJID7lGJE/faoMPyEUGb+hulE+lqU9PgAAAAAAAAAABi06PkP7dLxqyze7x7iMOcVh0L2Svl86AACAPwAAgD8amge+e1qYO/1UOj1Gt7i7bFUivVA6pzwAAIA/AACAP3p6Lj4s2LQ8epAQvCf1ubrKrUU+mxXFuwAAgD8AAIA/M9RCvjb+K7xKRdg2use8NEItmz2PBAW2AACAPwAAgD+mC4w9j8V8PZsz8L3+AiW+wN9HvGZi0jsAAAAAAAAAAI0iPL5Os8m8S4Mgu03Pf7npODk+pI6BOgAAgD8AAIA/QLmyPUdNKD8xtJU9eYXjvkDBID2DKDo9AAAAAAAAAADa4lw+K+tLP6P9Yz4UUgy/YXsrPn5ugbwAAAAAAAAAADPeOj6eJrw9PXDTvfPaN74TpWQ9YsEKvAAAAAAAAAAAswYvPi6uJT+q1Rg9NmcIvxer6z0NBmG8AAAAAAAAAACaAha+w1ITvEXqKjsU1ho5JZFvPRpiYLoAAIA/AAAAAE3OHD2bR5E/FiL2PVRwD7/4V4Y9DX6PPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV/wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFQoRywOe+MAWyUTUYBjAF0lEdAm4BoHkcS5HV9lChoBkdAGWHiFTNt7GgHS8VoCEdAm4K7TlT3qXV9lChoBkdAcWrWqLjxTmgHS+9oCEdAm4LHZXdTHnV9lChoBkdAcVmLsa86FWgHTVMBaAhHQJuDsikfs/p1fZQoaAZHQGJ0c5sCT2ZoB03oA2gIR0Cbg+GCZnctdX2UKGgGR0BkNyfe1rqMaAdN6ANoCEdAm4QlN1yNoHV9lChoBkdAch0X3xnWa2gHTRABaAhHQJuEydf9gnd1fZQoaAZHQHA0RuCPIXFoB0vSaAhHQJuGR7ojfN11fZQoaAZHQHBAwKSgXdloB0vPaAhHQJuG9QyhzvJ1fZQoaAZHQG6VdzOoo/loB0v9aAhHQJuH9SYPXkJ1fZQoaAZHQGLo+mFajetoB03oA2gIR0CbiJRmK64EdX2UKGgGR0BxLDzBhx5taAdN7wFoCEdAm4itWEK3NXV9lChoBkdAcS3k8ifQKWgHTRIBaAhHQJuJCPYFqzt1fZQoaAZHQENF5ooNNJxoB0uzaAhHQJuJq8Empl11fZQoaAZHQGW4gyuZCv5oB03oA2gIR0CbirSuhbnpdX2UKGgGR0ByK43BHkLhaAdNDAFoCEdAm4sEGiYb83V9lChoBkdAcdxrbxmTT2gHTTYBaAhHQJuLgDQqqfh1fZQoaAZHQHB6vAoG6f9oB0vYaAhHQJuL08xKxs51fZQoaAZHQGx7FpXZGrloB0v3aAhHQJuL0yKvV3F1fZQoaAZHQHA09V7x/d9oB0vqaAhHQJuMCWLP2PF1fZQoaAZHQHFY6Skj5bhoB0vRaAhHQJuMGh9LHuJ1fZQoaAZHQHMBbIPsiStoB0v7aAhHQJuPKrlvIfd1fZQoaAZHQG8xB7u2JBRoB0vUaAhHQJuPSJemelN1fZQoaAZHQHEcB0+1SfloB0v8aAhHQJuQGd3B55Z1fZQoaAZHQG9bJFspG4JoB0vdaAhHQJuQGLrHEMt1fZQoaAZHQHHO9pRGc4JoB0v0aAhHQJuQfzGxUvR1fZQoaAZHQG5xfdqL0jFoB0vfaAhHQJuQzYODrZ91fZQoaAZHQGHZfJ/5LytoB03oA2gIR0CbkWj9GZuydX2UKGgGR0BwgYH4XXRPaAdL42gIR0CbkjdVNpM6dX2UKGgGR0Bv3iJ0nw5OaAdL1GgIR0Cbkklz2exwdX2UKGgGR0BwAyQuEmICaAdL3GgIR0CbkzOVgQYldX2UKGgGR0BurGHxjJ+2aAdL4WgIR0Cbk0Vlf7aadX2UKGgGR0BwuVDneSB9aAdL62gIR0Cbk1i83++/dX2UKGgGR0BwnVFy7wrlaAdL8mgIR0Cbk4j94u9OdX2UKGgGR0BxkSYhMajvaAdLxGgIR0CblXFTvRZ2dX2UKGgGR0BuzKnJkoWpaAdL0GgIR0Cblbt03fhudX2UKGgGR0Bxe4mAskIHaAdLx2gIR0CblvgkC3gDdX2UKGgGR0BwE2x3V09yaAdL42gIR0Cbly2nKnvVdX2UKGgGR0BuVklVtGd7aAdL3mgIR0Cbl2V5rxiHdX2UKGgGR0BxTAsnRb8naAdL+2gIR0Cbl+p4rz5HdX2UKGgGR0ByJqbrkbPyaAdL62gIR0CbmKKOktVadX2UKGgGR0Bx6x0o0ALiaAdLxmgIR0CbmUXj2i+MdX2UKGgGR0Bwm6xHG0eEaAdL+mgIR0CbmhCtihFmdX2UKGgGR0Bv1KOWBz3iaAdL4WgIR0CbmlzC1qnFdX2UKGgGR0BwuhMGorFwaAdL6WgIR0Cbmok2P1cudX2UKGgGR0Bx5Qmw7kn1aAdNDQFoCEdAm5qby+YdAHV9lChoBkdAcdU2qkuYhWgHTQ8BaAhHQJub9dLQHA11fZQoaAZHQEyS/SpiqhloB0u0aAhHQJudG+AVfu11fZQoaAZHQEUxPdEb5uZoB0vEaAhHQJudMBU70Wd1fZQoaAZHQHDuZSvTw2FoB0vzaAhHQJudeearmyR1fZQoaAZHQHMsPDLr5ZdoB00CAWgIR0Cbn4XiR4hVdX2UKGgGR0BxePkhib2EaAdLz2gIR0CboCJ7LMcIdX2UKGgGR0BspZIWgvlEaAdL62gIR0CboHQxesxPdX2UKGgGR0BwYAsQNCqqaAdL1WgIR0CboTGc4HX3dX2UKGgGR0BCTWM0gr6MaAdLxGgIR0CboTJOFg2IdX2UKGgGR0Bx6w5n13+uaAdL0mgIR0CboZfzSThYdX2UKGgGR0BxXvacqe9SaAdL8GgIR0CbonN/OMVDdX2UKGgGR0BxPxEH+qBFaAdLymgIR0CbowZbpu/DdX2UKGgGR0BjYMug6EJ0aAdN6ANoCEdAm6WRisny/nV9lChoBkdAcLGN2C/XXmgHS+9oCEdAm6a6vA44qHV9lChoBkdAcK1rEcbR4WgHS/poCEdAm6bXmig00nV9lChoBkdAcCJGbCrLhmgHS9ZoCEdAm6iVjy4FzXV9lChoBkdAYoKuqWC2+mgHTegDaAhHQJuo93B55Z91fZQoaAZHQHEZ+PRzBARoB0vQaAhHQJupGnm7rcF1fZQoaAZHQHAdok/r0J5oB0vUaAhHQJupqtT1kDp1fZQoaAZHQG9OlVT72tdoB0vWaAhHQJuqt1GLDQ91fZQoaAZHQG5q1nuiN85oB0vgaAhHQJurvP0I1Lt1fZQoaAZHQG/qsEzO5axoB0vYaAhHQJushyo4uK51fZQoaAZHQHFwj5j6N2loB0v+aAhHQJusncUM5Ot1fZQoaAZHQHJBFMmF8G9oB00lAmgIR0CbrVRDkU9IdX2UKGgGR0Bkc5Z8rqdIaAdN6ANoCEdAm6584HX2/XV9lChoBkdAcJPasp5NXmgHS9poCEdAm6/htk4FR3V9lChoBke/8X7TDwYtQWgHS7hoCEdAm7DGFBY3enV9lChoBkdAcoY0NSZSemgHS9loCEdAm7KGfkFOf3V9lChoBkdAcuSLDAJswmgHS/doCEdAm7Qij+Jgs3V9lChoBkdAcXiDZUT+N2gHTZUBaAhHQJu1t+uvECN1fZQoaAZHQG8AJ3os7MhoB0vNaAhHQJu140HhS+B1fZQoaAZHQHFbkPQOWjZoB01ZAWgIR0CbtxzvJA+qdX2UKGgGR0BwlGHP/rB1aAdNNAFoCEdAm7lp1q33H3V9lChoBkdAcqlvuPV/c2gHTSIBaAhHQJu6hbu+h5B1fZQoaAZHQHFunE61b7loB0vMaAhHQJu7dS88La51fZQoaAZHQHBW+tbLU1BoB0vtaAhHQJu/1V7x/d91fZQoaAZHQF9uVgx8D0VoB03oA2gIR0CbwK17pmmMdX2UKGgGR0BvFAKhL5ARaAdNYAFoCEdAm8L3HWBjF3V9lChoBkdAcKjY+0PYnWgHTQ4BaAhHQJvDeX8fmtB1fZQoaAZHQHNDiE6DGtJoB00vA2gIR0Cbw5yOJcgRdX2UKGgGR0BvurHlwLmZaAdL32gIR0CbxV3W4EwGdX2UKGgGR0By4HMTviLmaAdNJgFoCEdAm8WPmgam43V9lChoBkdAbjgsUZeiSWgHS9loCEdAm8Xn7UG3WnV9lChoBkdAcGtqlxffGmgHS+JoCEdAm8bSlSCOFXV9lChoBkdAcbthhpg1FmgHS/JoCEdAm8pJeeFtbnV9lChoBkdAcTCqv/zasmgHS/hoCEdAm8sVII4VAXV9lChoBkdAcDf1XNke62gHS8VoCEdAm8sgGwA2h3V9lChoBkdAbl9S0BwMpmgHS+NoCEdAm8vRk3CKrXV9lChoBkdAck+ob4rSVmgHTQIBaAhHQJvN5H5Jsft1fZQoaAZHQHJtb5RCQcRoB034AWgIR0CbziMRpUPydX2UKGgGR0BwKITewcHXaAdL32gIR0CbzlXFcY65dX2UKGgGR0BwF8omXw9aaAdL42gIR0CbzwtTDO1OdX2UKGgGR0BurGgSOBDpaAdNAQFoCEdAm8/cvysjmnV9lChoBkdAcOwCl7+kxmgHS+toCEdAm9BQEZBLPHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}