--- language: - it license: apache-2.0 tags: - text-generation-inference - text generation --- # Mistral-7B-v0.1 for Italian Language Text Generation ## Model Architecture The Mistral-7B-v0.1 model is a transformer-based model that can handle a variety of tasks including but not limited to translation, summarization, and text completion. It's particularly designed for the Italian language and can be fine-tuned for specific tasks. ## Evaluation [Leaderboard Ita LLM](https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard) | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average | |:----------------------| :--------------- | :-------------------- | :------- | | 0.6734 | 0.5466 | 0.5334 | 0,5844 | **Quantized 4-Bit Version Available** A quantized 4-bit version of the model is available for use. This version offers a more efficient processing capability by reducing the precision of the model's computations to 4 bits, which can lead to faster performance and decreased memory usage. This might be particularly useful for deploying the model on devices with limited computational power or memory resources. For more details and to access the model, visit the following link: [Mistral-Ita-7b-GGUF 4-bit version](https://huggingface.co/DeepMount00/Mistral-Ita-7b-GGUF). --- ## How to Use How to utilize my Mistral for Italian text generation ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") MODEL_NAME = "DeepMount00/Mistral-Ita-7b" model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval() model.to(device) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) def generate_answer(prompt): messages = [ {"role": "user", "content": prompt}, ] model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True, temperature=0.001, eos_token_id=tokenizer.eos_token_id) decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return decoded[0] prompt = "Come si apre un file json in python?" answer = generate_answer(prompt) print(answer) ``` --- ## Developer [Michele Montebovi]