|
--- |
|
language: |
|
- en |
|
- it |
|
library_name: transformers |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
model-index: |
|
- name: Llama-3.1-8b-ITA |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 79.17 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 30.93 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 10.88 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 5.03 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 11.4 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 31.96 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Llama-3.1-8b-ITA |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
## Model Architecture |
|
- **Base Model:** [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) |
|
- **Specialization:** Italian Language |
|
|
|
|
|
## How to Use |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
MODEL_NAME = "DeepMount00/Llama-3.1-8b-Ita" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval() |
|
model.to(device) |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
|
|
def generate_answer(prompt): |
|
messages = [ |
|
{"role": "user", "content": prompt}, |
|
] |
|
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) |
|
generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True, |
|
temperature=0.001) |
|
decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) |
|
return decoded[0] |
|
|
|
prompt = "Come si apre un file json in python?" |
|
answer = generate_answer(prompt) |
|
print(answer) |
|
``` |
|
--- |
|
## Developer |
|
[Michele Montebovi] |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_DeepMount00__Llama-3.1-8b-ITA) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |28.23| |
|
|IFEval (0-Shot) |79.17| |
|
|BBH (3-Shot) |30.93| |
|
|MATH Lvl 5 (4-Shot)|10.88| |
|
|GPQA (0-shot) | 5.03| |
|
|MuSR (0-shot) |11.40| |
|
|MMLU-PRO (5-shot) |31.96| |
|
|
|
|