--- library_name: transformers tags: [] model-index: - name: Lexora-Medium-7B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 41.03 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Lexora-Medium-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 32.7 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Lexora-Medium-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 13.75 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Lexora-Medium-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 7.38 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Lexora-Medium-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 14.76 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Lexora-Medium-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 36.95 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=DeepMount00/Lexora-Medium-7B name: Open LLM Leaderboard --- ## How to Use ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "DeepMount00/Lexora-Medium-7B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", ) prompt = [{'role': 'user', 'content': """Marco ha comprato 5 scatole di cioccolatini. Ogni scatola contiene 12 cioccolatini. Ha deciso di dare 3 cioccolatini a ciascuno dei suoi 7 amici. Quanti cioccolatini gli rimarranno dopo averli distribuiti ai suoi amici?"""}] inputs = tokenizer.apply_chat_template( prompt, add_generation_prompt=True, return_tensors='pt' ) tokens = model.generate( inputs.to(model.device), max_new_tokens=1024, temperature=0.001, do_sample=True ) print(tokenizer.decode(tokens[0], skip_special_tokens=False)) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_DeepMount00__Lexora-Medium-7B) | Metric |Value| |-------------------|----:| |Avg. |24.43| |IFEval (0-Shot) |41.03| |BBH (3-Shot) |32.70| |MATH Lvl 5 (4-Shot)|13.75| |GPQA (0-shot) | 7.38| |MuSR (0-shot) |14.76| |MMLU-PRO (5-shot) |36.95|