# coding=utf-8 # Copyright and license in the repo. """ PyTorch DeciLM model.""" from .version_check import check_transformers_version check_transformers_version() from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_decilm import DeciLMConfig from .transformers_v4_35_2__modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from .transformers_v4_35_2__modeling_llama import LlamaMLP, LlamaRMSNorm, LlamaAttention, apply_rotary_pos_emb, \ repeat_kv, LlamaPreTrainedModel, LLAMA_START_DOCSTRING, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, \ BaseModelOutputWithPast, LLAMA_INPUTS_DOCSTRING MODEL_FOR_CAUSAL_LM_MAPPING_NAMES["deci"] = "DeciLMForCausalLM" _CONFIG_FOR_DOC = "DeciLMConfig" logger = logging.get_logger(__name__) class DeciLMAttention(LlamaAttention): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: DeciLMConfig, layer_idx: int): nn.Module.__init__(self) self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.layer_idx = layer_idx self.num_key_value_heads = config.num_key_value_heads_per_layer[layer_idx] self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.pretraining_tp = config.pretraining_tp self.max_position_embeddings = config.max_position_embeddings self.rope_theta = getattr(config, 'rope_theta', None) if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self._init_rope() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() is_decode = past_key_value is not None if self.pretraining_tp > 1: key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0) key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)] query_states = torch.cat(query_states, dim=-1) key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)] key_states = torch.cat(key_states, dim=-1) value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)] value_states = torch.cat(value_states, dim=-1) else: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if is_decode: with torch.backends.cuda.sdp_kernel(enable_math=True, enable_flash=True, enable_mem_efficient=attention_mask is None): attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=False, attn_mask=attention_mask) attn_output = attn_output.contiguous().view(bsz, q_len, self.hidden_size) else: with torch.backends.cuda.sdp_kernel(enable_math=True, enable_flash=False, enable_mem_efficient=False): attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=attention_mask is None, attn_mask=attention_mask) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size) if self.pretraining_tp > 1: attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2) o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1) attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)]) else: attn_output = self.o_proj(attn_output) attn_weights = None return attn_output, attn_weights, past_key_value class DeciLMDecoderLayer(LlamaDecoderLayer): def __init__(self, config: DeciLMConfig, layer_idx: int): nn.Module.__init__(self) self.hidden_size = config.hidden_size self.layer_idx = layer_idx self.self_attn = DeciLMAttention(config=config, layer_idx=layer_idx) self.mlp = LlamaMLP(config) self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) @add_start_docstrings( "The bare DeciLM Model outputting raw hidden-states without any specific head on top.", LLAMA_START_DOCSTRING, ) class DeciLMPreTrainedModel(LlamaPreTrainedModel): config_class = DeciLMConfig _no_split_modules = ["DeciLMDecoderLayer"] _keys_to_ignore_on_load_missing = ["self_attn.rotary_emb.inv_freq"] @add_start_docstrings( "The bare DeciLM Model outputting raw hidden-states without any specific head on top.", LLAMA_START_DOCSTRING, ) class DeciLMModel(LlamaModel, DeciLMPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciLMDecoderLayer`] Args: config: DeciLMConfig """ def __init__(self, config: DeciLMConfig): DeciLMPreTrainedModel.__init__(self, config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList([DeciLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]) self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None if attention_mask is not None: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) # embed positions hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class DeciLMForCausalLM(LlamaForCausalLM, DeciLMPreTrainedModel): def __init__(self, config): DeciLMPreTrainedModel.__init__(self, config) self.model = DeciLMModel(config) self.pretraining_tp = config.pretraining_tp self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init()