mistral-Bengali_NER / README.md
Debk's picture
Model save
a861cb8 verified
---
library_name: peft
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: your-project
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# your-project
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3281
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.814 | 0.0063 | 50 | 0.4102 |
| 0.3875 | 0.0127 | 100 | 0.3834 |
| 0.3645 | 0.0190 | 150 | 0.3681 |
| 0.369 | 0.0253 | 200 | 0.3606 |
| 0.3434 | 0.0317 | 250 | 0.3550 |
| 0.3567 | 0.0380 | 300 | 0.3509 |
| 0.3506 | 0.0443 | 350 | 0.3484 |
| 0.344 | 0.0507 | 400 | 0.3442 |
| 0.339 | 0.0570 | 450 | 0.3426 |
| 0.3437 | 0.0633 | 500 | 0.3398 |
| 0.3498 | 0.0697 | 550 | 0.3379 |
| 0.3319 | 0.0760 | 600 | 0.3358 |
| 0.3338 | 0.0823 | 650 | 0.3343 |
| 0.3301 | 0.0887 | 700 | 0.3333 |
| 0.3323 | 0.0950 | 750 | 0.3317 |
| 0.3289 | 0.1013 | 800 | 0.3306 |
| 0.3245 | 0.1077 | 850 | 0.3296 |
| 0.3189 | 0.1140 | 900 | 0.3290 |
| 0.32 | 0.1203 | 950 | 0.3283 |
| 0.3254 | 0.1267 | 1000 | 0.3281 |
### Framework versions
- PEFT 0.13.3.dev0
- Transformers 4.46.3
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3