--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - hf-asr-leaderboard - generated_from_trainer datasets: - British_english metrics: - wer model-index: - name: Whisper tiny Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: British English type: British_english args: 'config: default, split: test' metrics: - name: Wer type: wer value: 13.939980638915781 --- # Whisper tiny Japanese This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the British English dataset. It achieves the following results on the evaluation set: - Loss: 0.2952 - Wer: 13.9400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.325 | 0.9901 | 1000 | 0.3010 | 15.1431 | | 0.1716 | 1.9802 | 2000 | 0.2952 | 13.9400 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0