--- license: apache-2.0 --- from flask import Flask, render_template, request, jsonify from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Davlan/xlm-roberta-base-finetuned-shona") model = AutoModelForCausalLM.from_pretrained("Davlan/xlm-roberta-base-finetuned-shona") app = Flask(__name__) @app.route("/") def index(): return render_template('chat.html') @app.route("/get", methods=["GET", "POST"]) def chat(): msg = request.form["msg"] input = msg return get_Chat_response(input) def get_Chat_response(text): # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(str(text) + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot return tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) if __name__ == '__main__': app.run()