bert-base-multilingual-cased-finetuned-luo

Model description

bert-base-multilingual-cased-finetuned-luo is a Luo BERT model obtained by fine-tuning bert-base-multilingual-cased model on Luo language texts. It provides better performance than the multilingual BERT on named entity recognition datasets.

Specifically, this model is a bert-base-multilingual-cased model that was fine-tuned on Luo corpus.

Intended uses & limitations

How to use

You can use this model with Transformers pipeline for masked token prediction.

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-luo')
>>> unmasker("Obila ma Changamwe [MASK] pedho achije angwen mag njore")

Limitations and bias

This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.

Training data

This model was fine-tuned on JW300

Training procedure

This model was trained on a single NVIDIA V100 GPU

Eval results on Test set (F-score, average over 5 runs)

Dataset mBERT F1 luo_bert F1
MasakhaNER 74.22 75.59

BibTeX entry and citation info

By David Adelani


New: fine-tune this model in a few clicks by selecting AutoNLP in the "Train" menu!
Downloads last month
5
Hosted inference API
Fill-Mask
Mask token: [MASK]
This model can be loaded on the Inference API on-demand.