Hugging Face's logo --- language: ha datasets: --- # bert-base-multilingual-cased-finetuned-hausa ## Model description **bert-base-multilingual-cased-finetuned-hausa** is a **Hausa BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Hausa language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Hausa corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-hausa') >>> unmasker("Shugaban [MASK] Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci") [{'sequence': '[CLS] Shugaban Nigeria Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.9762618541717529, 'token': 22045, 'token_str': 'Nigeria'}, {'sequence': '[CLS] Shugaban Ka Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.007239189930260181, 'token': 25444, 'token_str': 'Ka'}, {'sequence': '[CLS] Shugaban, Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001990817254409194, 'token': 117, 'token_str': ','}, {'sequence': '[CLS] Shugaban Ghana Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001566368737258017, 'token': 28682, 'token_str': 'Ghana'}, {'sequence': '[CLS] Shugabanmu Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.0009375187801197171, 'token': 11717, 'token_str': '##mu'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Hausa CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | ha_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 86.65 | 91.31 [VOA Hausa Textclass](https://huggingface.co/datasets/hausa_voa_topics) | 84.76 | 90.98 ### BibTeX entry and citation info By David Adelani ``` ```