--- language: - en license: apache-2.0 library_name: peft tags: - facebook - meta - pytorch - llama - llama-2 base_model: DavidLanz/Llama3-tw-8B-Instruct model_name: Llama 3 8B Instruct inference: false model_creator: Meta Llama 3 model_type: llama pipeline_tag: text-generation quantized_by: QLoRA --- # Model Card for Model ID This PEFT model is designed for predicting the prices of these five Taiwan stocks: | 證券代號 | 證券名稱 | |---------|--------| | 3661 | 世芯-KY | | 2330 | 台積電 | | 3017 | 奇鋐 | | 2618 | 長榮航 | | 2317 | 鴻海 | Disclaimer: This model is for a time series problem on LLM performance, and it's not for investment advice; any prediction results are not a basis for investment reference. ## Model Details The training data source is from the [臺灣證券交易所 / Taiwan Stock Exchange (TWSE)](https://www.twse.com.tw/), covering the period from January 1, 2019, to July 1, 2024 (5 years). ### Model Description This repo contains QLoRA format model files for [Meta's Llama 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). ## Uses ```python import torch from peft import LoraConfig, PeftModel from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, TextStreamer, pipeline, logging, ) device_map = {"": 0} use_4bit = True bnb_4bit_compute_dtype = "float16" bnb_4bit_quant_type = "nf4" use_nested_quant = False compute_dtype = getattr(torch, bnb_4bit_compute_dtype) bnb_config = BitsAndBytesConfig( load_in_4bit=use_4bit, bnb_4bit_quant_type=bnb_4bit_quant_type, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=use_nested_quant, ) based_model_path = "DavidLanz/Llama3-tw-8B-Instruct" adapter_path = "DavidLanz/llama3_8b_taiwan_stock_qlora" base_model = AutoModelForCausalLM.from_pretrained( based_model_path, low_cpu_mem_usage=True, return_dict=True, quantization_config=bnb_config, torch_dtype=torch.float16, device_map=device_map, ) model = PeftModel.from_pretrained(base_model, adapter_path) tokenizer = AutoTokenizer.from_pretrained(based_model_path, trust_remote_code=True) import torch from transformers import pipeline, TextStreamer text_gen_pipeline = pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, tokenizer=tokenizer, ) messages = [ { "role": "system", "content": "你是一位專業的台灣股市交易分析師", }, {"role": "user", "content": "鴻海上週五的表現,開盤價是211.00,當日最高價是217.50,當日最低價是211.00,收盤價是212.00,與前一天相比下跌了5.50,成交股數為174,076,905,交易金額為37,127,696,834。請預測今天的收盤價?"}, ] prompt = text_gen_pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ text_gen_pipeline.tokenizer.eos_token_id, text_gen_pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = text_gen_pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ### Framework versions - PEFT 0.11.1 - PEFT 0.10.0