--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8078 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1001 | 1.0 | 75 | 2.0810 | 0.45 | | 1.563 | 2.0 | 150 | 1.5605 | 0.59 | | 1.1348 | 3.0 | 225 | 1.1216 | 0.73 | | 0.8687 | 4.0 | 300 | 0.9611 | 0.75 | | 0.6107 | 5.0 | 375 | 0.9266 | 0.71 | | 0.55 | 6.0 | 450 | 0.7138 | 0.81 | | 0.3267 | 7.0 | 525 | 0.7121 | 0.84 | | 0.3366 | 8.0 | 600 | 0.7213 | 0.81 | | 0.2463 | 9.0 | 675 | 0.7768 | 0.79 | | 0.1388 | 10.0 | 750 | 0.8165 | 0.79 | | 0.1413 | 11.0 | 825 | 0.7713 | 0.82 | | 0.0578 | 12.0 | 900 | 0.7860 | 0.8 | | 0.0329 | 13.0 | 975 | 0.7821 | 0.82 | | 0.0287 | 14.0 | 1050 | 0.8172 | 0.82 | | 0.0277 | 15.0 | 1125 | 0.8078 | 0.81 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3