Description --- imatrix.dat just for en or zh(beacuse of the data I used to imatrix) --- For this models,if you want more language, it seems that it would be better to quantize directly without using imatrix. (Q5_K_S is better.) --- If you want Chinese - English translate, you can use the imatrix.dat from here. --- I just made a gguf file for my own use, and then share it, please support the original author [haoranxu](https://huggingface.co/haoranxu) --- This repo contains GGUF format model files for **[haoranxu/ALMA-7B-R](https://huggingface.co/haoranxu/ALMA-7B-R)** --- That's all I can do with the bad network cable, short text translation works well, long text may encounter some problems, it is recommended to use it with a sentence splitting plugin (e.g. Immersive Translate). --- Q3KM will lead to an increase in translation speed and a decrease in quality, if you need better translation quality, it is recommended to use the original version (7B-R, 13B-R) --- prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:" --- Sensitive to the prescribed formatting, deformatting may lead to strange output, please refer to the perset.json (For LM Studio) in the file for details --- --- --- the original model card: --- license: mit **[ALMA-R](https://arxiv.org/abs/2401.08417)** builds upon [ALMA models](https://arxiv.org/abs/2309.11674), with further LoRA fine-tuning with our proposed **Contrastive Preference Optimization (CPO)** as opposed to the Supervised Fine-tuning used in ALMA. CPO fine-tuning requires our [triplet preference data](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) for preference learning. ALMA-R now can matches or even exceeds GPT-4 or WMT winners! ``` @misc{xu2024contrastive, title={Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}, author={Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim}, year={2024}, eprint={2401.08417}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{xu2023paradigm, title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models}, author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla}, year={2023}, eprint={2309.11674}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # Download ALMA(-R) Models and Dataset 🚀 We release six translation models presented in the paper: - ALMA-7B - ALMA-7B-LoRA - **ALMA-7B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-7B-LoRA with contrastive preference optimization. - ALMA-13B - ALMA-13B-LoRA - **ALMA-13B-R (NEW!)**: Further LoRA fine-tuning upon ALMA-13B-LoRA with contrastive preference optimization (BEST MODEL!). Model checkpoints are released at huggingface: | Models | Base Model Link | LoRA Link | |:-------------:|:---------------:|:---------:| | ALMA-7B | [haoranxu/ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B) | - | | ALMA-7B-LoRA | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-7B-Pretrain-LoRA) | | **ALMA-7B-R (NEW!)** | [haoranxu/ALMA-7B-R (LoRA merged)](https://huggingface.co/haoranxu/ALMA-7B-R) | - | | ALMA-13B | [haoranxu/ALMA-13B](https://huggingface.co/haoranxu/ALMA-13B) | - | | ALMA-13B-LoRA | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-13B-Pretrain-LoRA) | | **ALMA-13B-R (NEW!)** | [haoranxu/ALMA-13B-R (LoRA merged)](https://huggingface.co/haoranxu/ALMA-13B-R) | - | **Note that `ALMA-7B-Pretrain` and `ALMA-13B-Pretrain` are NOT translation models. They only experience stage 1 monolingual fine-tuning (20B tokens for the 7B model and 12B tokens for the 13B model), and should be utilized in conjunction with their LoRA models.** Datasets used by ALMA and ALMA-R are also released at huggingface now (NEW!) | Datasets | Train / Validation| Test | |:-------------:|:---------------:|:---------:| | Human-Written Parallel Data (ALMA) | [train and validation](https://huggingface.co/datasets/haoranxu/ALMA-Human-Parallel) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) | | Triplet Preference Data | [train](https://huggingface.co/datasets/haoranxu/ALMA-R-Preference) | [WMT'22](https://huggingface.co/datasets/haoranxu/WMT22-Test) and [WMT'23](https://huggingface.co/datasets/haoranxu/WMT23-Test) | A quick start to use our best system (ALMA-13B-R) for translation. An example of translating "我爱机器翻译。" into English: ``` import torch from transformers import AutoModelForCausalLM from transformers import AutoTokenizer # Load base model and LoRA weights model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-R", torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained("haoranxu/ALMA-13B-R", padding_side='left') # Add the source sentence into the prompt template prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:" input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda() # Translation with torch.no_grad(): generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9) outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(outputs) ``` Please find more details in our [GitHub repository](https://github.com/fe1ixxu/ALMA)